PDF (2.6 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Topical Review | Open Access

Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation

Rong Chen1 ()Kun Cao1Yanwei Wen2Fan Yang1Jian Wang1Xiao Liu1Bin Shan2
State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Show Author Information

Abstract

Driven by the growing demand for next-generation displays, the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating, with such materials including quantum dots and phosphors, etc. Nevertheless, the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards. Atomic layer deposition (ALD) has, therefore, been employed to stabilize luminescent materials, and as a result, flexible display devices have been fabricated through material modification, surface and interface engineering, encapsulation, cross-scale manufacturing, and simulations. In addition, the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost, high-efficiency, and high-reliability manufacturing requirements. This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials, highly efficient light-emitting diodes (LEDs), and thin-film packaging. Ultimately, this significantly enhances their potential applicability in LED illumination and backlighted displays, marking a notable advancement in the display industry.

References

[1]

Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Building devices from colloidal quantum dots Science 353 aac5523

[2]

Bera S and Pradhan N 2020 Perovskite nanocrystal heterostructures: synthesis, optical properties, and applications ACS Energy Lett. 5 2858–72

[3]

Chen L, Cheng Z M, Zheng G F, Yao G, He L R, Wang L, Liu J Z, Zheng H W, Wei S Z and Ni H Y 2021 A third route to synthesis of green phosphor SrSi2O2N2:Eu2+ from SrO J. Lumin. 230 117729

[4]

Macpherson S et al 2022 Local nanoscale phase impurities are degradation sites in halide perovskites Nature 607 294–300

[5]

Liu M M et al 2021 Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes Nat. Photon. 15 379–85

[6]

Li Y, Li Q L, Li Y, Yang Y L, Zhang S L, Zhao J T, Wan J Q and Zhang Z J 2023 Water-assistant ultrahigh fluorescence enhancement in perovskite polymer-encapsulated film for flexible x-ray scintillators Chem. Eng. J. 452 139132

[7]

Liu Y C, Chen T, Jin Z K, Li M X, Zhang D D, Duan L, Zhao Z G and Wang C 2022 Tough, stable and self-healing luminescent perovskite-polymer matrix applicable to all harsh aquatic environments Nat. Commun. 13 1338

[8]

Xu W T, Zhou Y F, Huang D C, Su M Y, Wang K, Xiang M and Hong M C 2015 Luminescent sensing profiles based on anion-responsive lanthanide(III) quinolinecarboxylate materials: solid-state structures, photophysical properties, and anionic species recognition J. Mater. Chem. C 3 2003–15

[9]

Tsai Y T, Chiang C Y, Zhou W Z, Lee J F, Sheu H S and Liu R S 2015 Structural ordering and charge variation induced by cation substitution in (Sr, Ca)AlSiN3:Eu phosphor J. Am. Chem. Soc. 137 8936–9

[10]

Li Z B, Seto T and Wang Y H 2020 Enhanced crystallinity and thermal stability of Ba2+ and Al3+-O2− co-substituted Sr2Si5N8:Eu2+ J. Mater. Chem. C 8 9874–84

[11]

Feldmann S, Gangishetty M K, Bravić I, Neumann T, Peng B, Winkler T, Friend R H, Monserrat B, Congreve D N and Deschler F 2021 Charge carrier localization in doped perovskite nanocrystals enhances radiative recombination J. Am. Chem. Soc. 143 8647–53

[12]

Bian H, Wang Q, Yang S W, Yan C J, Wang H R, Liang L, Jin Z W, Wang G and Liu S Z 2019 Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16% J. Mater. Chem. A 7 5740–7

[13]

Xiang F M, Givens T M, Ward S M and Grunlan J C 2015 Elastomeric polymer multilayer thin film with sustainable gas barrier at high strain ACS Appl. Mater. Interfaces 7 16148–51

[14]

Liu Y W, Tang A, Tan J H, Li Y H, Wu D, Zhang X, Zhao X Q, He P and Zhang H L 2020 High-barrier polyimide containing fluorenol moiety: gas barrier properties and molecular simulations React. Funct. Polym. 157 104747

[15]

Zhu L J, Babu S S, Yu Q X, Long Y B, Zheng Z B, Wu H Y, Liu S W, Chi Z G, Zhang Y and Xu J R 2020 Transparent flexible ultra-low permeability encapsulation film: fusible glass fired on heat-resistant polyimide membrane Adv. Mater. Interfaces 7 2001170

[16]

Palmstrom A F, Santra P K and Bent S F 2015 Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties Nanoscale 7 12266–83

[17]

George S M 2010 Atomic layer deposition: an overview Chem. Rev. 110 111–31

[18]

Bakke J R, Pickrahn K L, Brennan T P and Bent S F 2011 Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition Nanoscale 3 3482–508

[19]

Zhao Y J, Yin L J, ten Kate O M, Dierre B, Abellon R, Xie R J, van Ommen J R and Hintzen H T 2019 Enhanced thermal degradation stability of the Sr2Si5N8:Eu2+ phosphor by ultra-thin Al2O3 coating through the atomic layer deposition technique in a fluidized bed reactor J. Mater. Chem. C 7 5772–81

[20]
Sanders B W 1993 Atomic layer epitaxy of phosphor thin films Solid State Luminescence: Theory, Materials and Devices ed A H Kitai (Springer) pp 293–312
[21]

Li Y et al 2023 Self-aligned patterning of tantalum oxide on Cu/SiO2 through redox-coupled inherently selective atomic layer deposition Nat. Commun. 14 4493

[22]

Kumah D P, Ngai J H and Kornblum L 2020 Epitaxial oxides on semiconductors: from fundamentals to new devices Adv. Funct. Mater. 30 1901597

[23]

Wei H Y, Wu J H, Qiu P, Liu S J, He Y F, Peng M Z, Li D M, Meng Q B, Zaera F and Zheng X H 2019 Plasma-enhanced atomic-layer-deposited gallium nitride as an electron transport layer for planar perovskite solar cells J. Mater. Chem. A 7 25347–54

[24]

Abelson A, Qian C, Salk T, Luan Z Y, Fu K, Zheng J G, Wardini J L and Law M 2020 Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice Nat. Mater. 19 49–55

[25]

Woo J H, Koo D, Kim N H, Kim H, Song M H, Park H and Kim J Y 2021 Amorphous alumina film robust under cyclic deformation: a highly impermeable and a highly flexible encapsulation material ACS Appl. Mater. Interfaces 13 46894–901

[26]

Geng S C, Wen Y W, Zhou B Z, Wang Z J, Wang Z J, Wang P F, Jing Y, Cao K, Wang K and Chen R 2021 High luminance and stability of perovskite quantum dot light-emitting diodes via ZnBr2 passivation and an ultrathin Al2O3 barrier with improved carrier balance and ion diffusive inhibition ACS Appl. Electron. Mater. 3 2362–71

[27]

Jing Y, Cao K, Zhou B Z, Geng S C, Wen Y W, Shan B and Chen R 2020 Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals Chem. Mater. 32 10653–62

[28]

Fang F et al 2020 Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications Adv. Opt. Mater. 8 1902118

[29]

Wang P F, Qin L, Zhou B Z, Liu M J, Geng S C, Wang M, Lei Z Y, Wen Y W and Chen R 2022 Boosted efficiency and lifetime of perovskite quantum dots light-emitting diode via NiOx/PEDOT:PSS dual hole injection layers Appl. Phys. Lett. 120 033502

[30]

Zhou B Z, Wang P F, Geng S C, Wang M, Qin L, Wen Y W and Chen R 2021 Highly efficient CsPbBr3 perovskite nanocrystal light-emitting diodes with enhanced stability via colloidal layer-by-layer deposition ACS Appl. Electron. Mater. 3 2398–406

[31]

Loiudice A, Saris S, Oveisi E, Alexander D T L and Buonsanti R 2017 CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light, and heat Angew. Chem., Int. Ed. 56 10696–701

[32]

Xiang Q Y, Zhou B Z, Cao K, Wen Y W, Li Y, Wang Z J, Jiang C C, Shan B and Chen R 2018 Bottom up stabilization of CsPbBr3 quantum dots-silica sphere with selective surface passivation via atomic layer deposition Chem. Mater. 30 8486–94

[33]

Likovich E M, Jaramillo R, Russell K J, Ramanathan S and Narayanamurti V 2011 High-current-density monolayer CdSe/ZnS quantum dot light-emitting devices with oxide electrodes Adv. Mater. 23 4521–5

[34]

Zhou B Z, Qin L, Wang P F, Chen Z, Zang J F, Zhang J B, Wen Y W and Chen R 2023 Fabrication of ZnO dual electron transport layer via atomic layer deposition for highly stable and efficient CsPbBr3 perovskite nanocrystals light-emitting diodes Nanotechnology 34 025203

[35]

Yang Y Q, Duan Y, Chen P, Sun F B, Duan Y H, Wang X and Yang D 2013 Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature J. Phys. Chem. C 117 20308–12

[36]

Kim S H, Song S Y, Kim S Y, Chang M W, Kwon H J, Yoon K H, Sung W Y, Sung M M and Chu H Y 2022 A compact polymer–inorganic hybrid gas barrier nanolayer for flexible organic light-emitting diode displays npj Flex Electron. 6 21

[37]

Dey A et al 2021 State of the art and prospects for halide perovskite nanocrystals ACS Nano 15 10775–981

[38]

Ho K, Wei M Y, Sargent E H and Walker G C 2021 Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light ACS Energy Lett. 6 934–40

[39]

Chen Z, Zhou B Z, Yuan J H, Tang N, Lian L Y, Qin L, Zhu L H, Zhang J B, Chen R and Zang J F 2021 Cu2+-doped CsPbI3 nanocrystals with enhanced stability for light-emitting diodes J. Phys. Chem. Lett. 12 3038–45

[40]

Chen R, Liu M J, Wang M, Zhang Y H, Shan B and Cao K 2022 Acid-mediated phase transition synthesis of stable nanocrystals for high-power LED backlights Nanoscale 14 13628–38

[41]

Jing Y, Merkx M J M, Cai J M, Cao K, Kessels W M M, Mackus A J M and Chen R 2020 Nanoscale encapsulation of perovskite nanocrystal luminescent films via plasma-enhanced SiO2 atomic layer deposition ACS Appl. Mater. Interfaces 12 53519–27

[42]

Zhao M, Cao K, Liu M J, Zhang J, Chen R, Zhang Q Y and Xia Z G 2020 Dual-shelled RbLi(Li3SiO4)2:Eu2+@Al2O3@ODTMS phosphor as a stable green emitter for high-power LED backlights Angew. Chem., Int. Ed. 59 12938–43

[43]

Liu Y B, Feng F, Zhang K, Jiang F L, Chan K W, Kwok H S and Liu Z J 2022 Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size down to 3 μm J. Appl. Phys. 55 315107

[44]

Kramer I J and Sargent E H 2011 Colloidal quantum dot photovoltaics: a path forward ACS Nano 5 8506–14

[45]

Li G R et al 2016 Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method Adv. Mater. 28 3528–34

[46]

Asundi A S, Raiford J A and Bent S F 2019 Opportunities for atomic layer deposition in emerging energy technologies ACS Energy Lett. 4 908–25

[47]

Zhou B Z, Wang Z J, Geng S C, Li Y, Wang K, Cao K, Wen Y W and Chen R 2020 Interface engineering of CsPbBr3 nanocrystal light-emitting diodes via atomic layer deposition Phys. Status Solidi 14 2000083

[48]

Zhou B Z, Liu M J, Wen Y W, Li Y and Chen R 2020 Atomic layer deposition for quantum dots based devices Opto-Electron. Adv. 3 190043

[49]

Thimsen E, Johnson M, Zhang X, Wagner A J, Mkhoyan K A, Kortshagen U R and Aydil E S 2014 High electron mobility in thin films formed via supersonic impact deposition of nanocrystals synthesized in nonthermal plasmas Nat. Commun. 5 5822

[50]

Ji W Y, Shen H B, Zhang H, Kang Z H and Zhang H Z 2018 Over 800% efficiency enhancement of all-inorganic quantum-dot light emitting diodes with an ultrathin alumina passivating layer Nanoscale 10 11103–9

[51]

Yoon S H et al 2019 Insertion of an inorganic barrier layer as a method of improving the performance of quantum dot light-emitting diodes ACS Photonics 6 743–8

[52]

Lu Q, Yang Z C, Meng X, Yue Y F, Ahmad M A, Zhang W J, Zhang S S, Zhang Y Q, Liu Z H and Chen W 2021 A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells Adv. Funct. Mater. 31 2100151

[53]

Kwon B H et al 2021 Organic/Inorganic hybrid thin-film encapsulation using inkjet printing and PEALD for industrial large-area process suitability and flexible OLED application ACS Appl. Mater. Interfaces 13 55391–402

[54]

Li Y, Cao K, Xiong Y F, Yang H Z, Zhang Y H, Lin Y, Zhou B Z, Huang J and Chen R 2020 Composite encapsulation films with ultrahigh barrier performance for improving the reliability of blue organic light-emitting diodes Adv. Mater. Interfaces 7 2000237

[55]

Behrendt A, Friedenberger C, Gahlmann T, Trost S, Becker T, Zilberberg K, Polywka A, Görrn P and Riedl T 2015 Highly robust transparent and conductive gas diffusion barriers based on tin oxide Adv. Mater. 27 5961–7

[56]

Chou C T, Yu P W, Tseng M H, Hsu C C, Shyue J J, Wang C C and Tsai F Y 2013 Transparent conductive gas-permeation barriers on plastics by atomic layer deposition Adv. Mater. 25 1750–4

[57]

Li Y, Xiong Y F, Cao W R, Zhu Q Q, Lin Y, Zhang Y H, Liu M J, Yang F, Cao K and Chen R 2021 Flexible PDMS/Al2O3 nanolaminates for the encapsulation of blue OLEDs Adv. Mater. Interfaces 8 2100872

[58]

Carcia P F, McLean R S, Reilly M H, Groner M D and George S M 2006 Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers Appl. Phys. Lett. 89 031915

[59]

Paetzold R, Winnacker A, Henseler D, Cesari V and Heuser K 2003 Permeation rate measurements by electrical analysis of calcium corrosion Rev. Sci. Instrum. 74 5147–50

[60]

Park S H K, Oh J, Hwang C S, Lee J I, Yang Y S and Chu H Y 2005 Ultrathin film encapsulation of an OLED by ALD Electrochem. Solid-State Lett. 8 H21

[61]

Kim H G and Kim S S 2011 Aluminum oxide barrier coating on polyethersulfone substrate by atomic layer deposition for barrier property enhancement Thin Solid Films 520 481–5

[62]

Wang H R, Wang Z Y, Xu X C, Liu Y F, Chen C, Chen P, Hu W and Duan Y 2019 Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance Appl. Phys. Lett. 114 201902

[63]

Fahlteich J, Schönberger W, Fahland M and Schiller N 2011 Characterization of reactively sputtered permeation barrier materials on polymer substrates Surf. Coat. Technol. 205 S141–4

[64]

Trung T Q, Kim C, Lee H B, Cho S M and Lee N E 2020 Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode Adv. Mater. Technol. 5 1900995

[65]

Wilson C A, Grubbs R K and George S M 2005 Nucleation and growth during Al2O3 atomic layer deposition on polymers Chem. Mater. 17 5625–34

[66]

Li Y, Wen D, Zhang Y H, Lin Y, Cao K, Yang F and Chen R 2021 Highly-stable PEN as a gas-barrier substrate for flexible displays via atomic layer infiltration Dalton. Trans. 50 16166–75

[67]

Chen T N, Wuu D S, Wu C C, Chiang C C, Chen Y P and Horng R H 2006 High-performance transparent barrier films of SiOx/SiNx stacks on flexible polymer substrates J. Electrochem. Soc. 153 F244

[68]

Jeong E G, Kwon S, Han J H, Im H G, Bae B S and Choi K C 2017 A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs Nanoscale 9 6370–9

[69]

Kim L H, Kim K, Park S, Jeong Y J, Kim H, Chung D S, Kim S H and Park C E 2014 Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition ACS Appl. Mater. Interfaces 6 6731–8

[70]

Seo S W, Jung E, Lim C, Chae H and Cho S M 2012 Water permeation through organic-inorganic multilayer thin films Thin Solid Films 520 6690–4

[71]

Wang Z Y, Wang J T, Li Z, Chen Z Q, Shangguan L C, Fan S Y and Duan Y 2023 Crosslinking and densification by Plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells Nano Energy 109 108232

[72]

Wang Z Y, Chen Z Q, Wang J T, Shangguan L C, Fan S Y and Duan Y 2023 Realization of an autonomously controllable process for atomic layer deposition and its encapsulation application in flexible organic light-emitting diodes Opt. Express 31 21672–88

[73]

Mahmood S, Khan A, Kant C, Chu C W, Katiyar M and Lin H C 2023 Transparent, stretchable, and self-healable gas barrier films with 2D nanoplatelets for flexible electronic device packaging applications Adv. Mater. Interfaces 10 2202093

[74]

Chen J W, Zhu Y T, Chang X H, Pan D, Song G, Guo Z H and Naik N 2021 Recent progress in essential functions of soft electronic skin Adv. Funct. Mater. 31 2104686

[75]

Zhang Y H, Wen D, Liu M J, Li Y, Lin Y, Cao K, Yang F and Chen R 2022 Stretchable PDMS encapsulation via SiO2 doping and atomic layer infiltration for flexible displays Adv. Mater. Interfaces 9 2101857

[76]

Li Y, Xiong Y F, Yang Z H, Cao K and Chen R 2020 Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition J. Mater. Res. 35 681–700

[77]

Yun S, Wang H, Tom M, Ou F Y, Orkoulas G and Christofides P D 2023 Multiscale CFD modeling of area-selective atomic layer deposition: application to reactor design and operating condition calculation Coatings 13 558

[78]

Nguyen C T et al 2022 Gradient area-selective deposition for seamless gap-filling in 3D nanostructures through surface chemical reactivity control Nat. Commun. 13 7597

[79]

Fang W Z, Tang Y Q, Ban C M, Kang Q J, Qiao R and Tao W Q 2019 Atomic layer deposition in porous electrodes: a pore-scale modeling study Chem. Eng. J. 378 122099

[80]

Yim J, Verkama E, Velasco J A, Arts K and Puurunen R L 2022 Conformality of atomic layer deposition in microchannels: impact of process parameters on the simulated thickness profile Phys. Chem. Chem. Phys. 24 8645–60

[81]

Lan Y X, Wen Y W, Li Y C, Yang J Q, Cao K, Shan B and Chen R 2023 Selectivity dependence of atomic layer deposited manganese oxide on the precursor ligands on platinum facets J Vac. Sci. Technol. A 41 012402

[82]

Chen Y X, Li Z S, Dai Z A, Yang F, Wen Y W, Shan B and Chen R 2023 Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures Chem. Eng. J. 472 144944

[83]

Wang Z J, Liu Z, Cao K, Wen Y W, Chen R and Shan B 2022 First-principles study of electronic properties of amine ligand-capped CsPbBr3 surface with organo-metallic alumina precursor treatment Appl. Surf. Sci. 600 154070

[84]

Zheng Y X, Hong S, Psofogiannakis G, Rayner G B Jr, Datta S, Van Duin A C T and Engel-Herbert R 2017 Modeling and in situ probing of surface reactions in atomic layer deposition ACS Appl. Mater. Interfaces 9 15848–56

[85]

Shaeri M R, Jen T C, Yuan C Y and Behnia M 2015 Investigating atomic layer deposition characteristics in multi-outlet viscous flow reactors through reactor scale simulations Int. J. Heat Mass Transfer 89 468–81

[86]

Cong W T, Li Z S, Cao K, Feng G and Chen R 2020 Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method Chem. Eng. Sci. 217 115513

[87]

Poodt P, Mameli A, Schulpen J, Kessels W M M and Roozeboom F 2017 Effect of reactor pressure on the conformal coating inside porous substrates by atomic layer deposition J. Vac. Sci. Technol. A 35 021502

[88]
Li H J, Wang Z J, Wen Y W, Shan B and Chen R 2022 Catalyst Hub (available at: www.catalysthub.net/ALDdatabase.php)
[89]

Sun P Z et al 2020 Limits on gas impermeability of graphene Nature 579 229–32

[90]

Zhou K G et al 2018 Electrically controlled water permeation through graphene oxide membranes Nature 559 236–40

[91]

Franklin A D 2015 Nanomaterials in transistors: from high-performance to thin-film applications Science 349 aab2750

[92]

Park J, Heo S, Park K, Song M H, Kim J Y, Kyung G, Ruoff R S, Park J U and Bien F 2017 Research on flexible display at Ulsan national institute of science and technology npj Flex Electron. 1 9

[93]

Nörenberg H, Miyamoto T, Tsukahara Y, Smith G D W and Briggs G A D 1999 Mass spectrometric estimation of gas permeation coefficients for thin polymer membranes Rev. Sci. Instrum. 70 2414–20

[94]

Nakano Y, Yanase T, Nagahama T, Yoshida H and Shimada T 2016 Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10−6 g m−2 day−1 range Sci. Rep. 6 35408

[95]

Wanyan J, Cao K, Chen Z P, Li Y, Liu C X, Wu R Q, Zhang X D and Chen R 2021 A predictive instrument for sensitive and expedited measurement of ultra-barrier permeation Engineering 7 1459–68

[96]

Kiese S, Kücükpinar E, Reinelt M, Miesbauer O, Ewender J and Langowski H C 2017 A systematic approach for the accurate and rapid measurement of water vapor transmission through ultra-high barrier films Rev. Sci. Instrum. 88 025108

[97]

Chen Z P, Cao K, Wu R Q, Zhang L C, Zhang X D and Chen R 2022 Empirical model and PSO-based algorithm for efficient measurement of gas permeation through high barrier IEEE Trans. Instrum. Meas. 71 7501308

[98]

MacDonald W A, Looney M K, Mackerron D, Eveson R, Adam R, Hashimoto K and Rakos K 2007 Latest advances in substrates for flexible electronics J. Soc. Inf. Disp. 15 1075–83

[99]

Hong N N, Synowicki R A and Hilfiker J N 2017 Mueller matrix characterization of flexible plastic substrates Appl. Surf. Sci. 421 518–28

[100]

Arteaga O, Freudenthal J, Nichols S, Canillas A and Kahr B 2014 Transmission ellipsometry of anisotropic substrates and thin films at oblique incidence. Handling multiple reflections Thin Solid Films 571 701–5

[101]

Luders D D, Arcolezi G M, Pereira M L G, Braga W S, Santos O R, Simões M, Kimura N M, Sampaio A R and Palangana A J 2021 Conoscopic image of a biaxial negative in a reentrant discotic—biaxial nematic phase transition Liq. Cryst. 48 974–9

[102]

Aspnes D E 2014 Spectroscopic ellipsometry—Past, present, and future Thin Solid Films 571 334–44

[103]

Postava K, Yamaguchi T and Kantor R 2002 Matrix description of coherent and incoherent light reflection and transmission by anisotropic multilayer structures Appl. Opt. 41 2521–31

[104]

Nichols S, Arteaga O, Martin A and Kahr B 2015 Measurement of transmission and reflection from a thick anisotropic crystal modeled by a sum of incoherent partial waves J. Opt. Soc. Am. A 32 2049–57

[105]

Nichols S M, Arteaga O, Martin A T and Kahr B 2017 Partially coherent light propagation in stratified media containing an optically thick anisotropic layer Appl. Surf. Sci. 421 571–7

[106]

Arteaga O and Kahr B 2019 Mueller matrix polarimetry of bianisotropic materials J. Opt. Soc. Am. B 36 F72–F83

[107]

Ghim Y S and Rhee H G 2019 Instantaneous thickness measurement of multilayer films by single-shot angle-resolved spectral reflectometry Opt. Lett. 44 5418–21

[108]

Choi G, Kim M, Kim J and Pahk H J 2020 Angle-resolved spectral reflectometry with a digital light processing projector Opt. Express 28 26908–21

[109]

Peng L H, Tang D W, Wang J, Chen R, Gao F and Zhou L P 2021 Robust incident angle calibration of angle-resolved ellipsometry for thin film measurement Appl. Opt. 60 3971–6

[110]

Oviroh P O, Akbarzadeh R, Pan D Q, Coetzee R A M and Jen T C 2019 New development of atomic layer deposition: processes, methods and applications Sci. Technol. Adv. Mater. 20 465–96

[111]

Cremers V, Puurunen R L and Dendooven J 2019 Conformality in atomic layer deposition: current status overview of analysis and modelling Appl. Phys. Rev. 6 021302

[112]

Nguyen V H, Sekkat A, Jiménez C, Muñoz D, Bellet D and Muñoz-Rojas D 2021 Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition Chem. Eng. J. 403 126234

[113]

Li Z S, Xiang J R, Liu X, Li X B, Li L J, Shan B and Chen R 2022 A combined multiscale modeling and experimental study on surface modification of high-volume micro-nanoparticles with atomic accuracy Int. J. Extreme Manuf. 4 025101

[114]

Duan C L, Liu X, Shan B and Chen R 2015 Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition Rev. Sci. Instrum. 86 075101

[115]

Gu H et al 2022 Modeling of deposit formation in mesoporous substrates via atomic layer deposition: insights from pore-scale simulation AIChE J. 68 e17889

[116]

Cao K, Hu Q, Cai J M, Gong M, Yang J F, Shan B and Chen R 2018 Development of a scanning probe microscopy integrated atomic layer deposition system for in situ successive monitoring of thin film growth Rev. Sci. Instrum. 89 123702

[117]

Huang B, Yang W J, Wen Y W, Shan B and Chen R 2015 Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance ACS Appl. Mater. Interfaces 7 422–31

[118]

Muñoz-Rojas D, Maindron T, Esteve A, Piallat F, Kools J C S and Decams J M 2019 Speeding up the unique assets of atomic layer deposition Mater. Today Chem. 12 96–120

[119]

Muñoz-Rojas D and MacManus-Driscoll J 2014 Spatial atmospheric atomic layer deposition: a new laboratory and industrial tool for low-cost photovoltaics Mater. Horiz. 1 314–20

[120]

Wang X L, Li Y, Lin J L, Shan B and Chen R 2017 Modular injector integrated linear apparatus with motion profile optimization for spatial atomic layer deposition Rev. Sci. Instrum. 88 115108

[121]

Deng Z, He W J, Duan C L, Chen R and Shan B 2016 Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition J Vac. Sci. Technol. A 34 01A108

[122]

Pan D Q 2019 Numerical study on the effectiveness of precursor isolation using N2 as gas barrier in spatial atomic layer deposition Int. J. Heat Mass Transfer 144 118642

International Journal of Extreme Manufacturing
Article number: 022003
Cite this article:
Chen R, Cao K, Wen Y, et al. Atomic layer deposition in advanced display technologies: from photoluminescence to encapsulation. International Journal of Extreme Manufacturing, 2024, 6(2): 022003. https://doi.org/10.1088/2631-7990/ad15f5
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return