AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications

Zhuohui Huang1Yanran Li1Yi Zhang1Jiewei Chen2Jun He1( )Jie Jiang1 ( )
Hunan Key Laboratory of Nanophotonics and Devices, School of Physics, Central South University, Changsha, Hunan, People’s Republic of China
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China, People’s Republic of China
Show Author Information

Abstract

Neuromorphic computing systems, which mimic the operation of neurons and synapses in the human brain, are seen as an appealing next-generation computing method due to their strong and efficient computing abilities. Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware. As a result, 2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications. Here, we review the recent neuromorphic devices based on 2D material and their multifunctional applications. The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced. The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles. More importantly, we present a review of emerging multifunctional neuromorphic applications, including neuromorphic visual, auditory, tactile, and nociceptive systems based on 2D devices. In the end, we discuss the problems and methods for 2D neuromorphic device developments in the future. This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems.

References

[1]

Chen C P and Zhang C Y 2014 Data-intensive applications, challenges, techniques and technologies: a survey on big data Inf. Sci. 275 314–47

[2]

Cheng C, Tiw P J, Cai Y, Yan X, Yang Y and Huang R 2021 In-memory computing with emerging nonvolatile memory devices Sci. China Inf. Sci. 64 221402

[3]

Moore G E 1998 Cramming more components onto integrated circuits Proc. IEEE 86 82–85

[4]

Drachman D A 2005 Do we have brain to spare? Neurology 64 2004–5

[5]

Pfeiffer M and Pfeil T 2018 Deep learning with spiking neurons: opportunities and challenges Front. Neurosci. 12 774

[6]

Mead C 1990 Neuromorphic electronic systems Proc. IEEE 78 1629–36

[7]

Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301

[8]

Kuzum D, Jeyasingh R G D, Lee B and Wong H S P 2012 Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing Nano Lett. 12 2179–86

[9]

Tian H, Zhao L F, Wang X F, Yeh Y W, Yao N, Rand B P and Ren T L 2017 Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing ACS Nano 11 12247–56

[10]

Shi Y Y et al 2018 Electronic synapses made of layered two-dimensional materials Nat. Electron. 1 458–65

[11]

Park E et al 2022 A pentagonal 2D layered PdSe2-based synaptic device with a graphene floating gate J. Mater. Chem. C 10 16536–45

[12]

Yang C S, Shang D S, Liu N, Fuller E J, Agrawal S, Talin A A, Li Y Q, Shen B G and Sun Y 2018 All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing Adv. Funct. Mater. 28 1804170

[13]

Cheng Y C, Shan K X, Xu Y, Yang J L, He J and Jiang J 2020 Hardware implementation of photoelectrically modulated dendritic arithmetic and spike-timing-dependent plasticity enabled by an ion-coupling gate-tunable vertical 0D-perovskite/2D-MoS2 hybrid-dimensional van der Waals heterostructure Nanoscale 12 21798–8811

[14]

Yang X X, Yu J R, Zhao J, Chen Y H, Gao G Y, Wang Y F, Sun Q J and Wang Z L 2020 Mechanoplastic tribotronic floating-gate neuromorphic transistor Adv. Funct. Mater. 30 2002506

[15]

Shao L et al 2019 Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices ACS Appl. Mater. Interfaces 11 12161–9

[16]

Wang X W, Wang B L, Zhang Q H, Sun Y F, Wang E Z, Luo H, Wu Y H, Gu L, Li H L and Liu K 2021 Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices Adv. Mater. 33 2102435

[17]

Zhou F C et al 2019 Optoelectronic resistive random access memory for neuromorphic vision sensors Nat. Nanotechnol. 14 776–82

[18]

He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Dual-functional long-term plasticity emulated in IGZO-based photoelectric neuromorphic transistors IEEE Electron Device Lett. 40 818–21

[19]

Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, Zhou L, Chen X L and Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater. 30 1802883

[20]

Wu Q T et al 2018 Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions Adv. Electron. Mater. 4 1800556

[21]

Yu J R, Yang X X, Gao G Y, Xiong Y, Wang Y F, Han J, Chen Y H, Zhang H, Sun Q J and Wang Z L 2021 Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure Sci. Adv. 7 eabd9117

[22]

Sharbati M T, Du Y H, Torres J, Ardolino N D, Yun M and Xiong F 2018 Low-power, electrochemically tunable graphene synapses for neuromorphic computing Adv. Mater. 30 1802353

[23]

Jiang J, Guo J J, Wan X, Yang Y, Xie H P, Niu D M, Yang J J, He J, Gao Y L and Wan Q 2017 2D MoS2 neuromorphic devices for brain-like computational systems Small 13 1700933

[24]

Zhang W G, Gao H, Deng C S, Lv T, Hu S L, Wu H, Xue S Y, Tao Y F, Deng L M and Xiong W 2021 An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction Nanoscale 13 11497–504

[25]

Chen H H, Kang Y, Pu D, Tian M, Wan N, Xu Y, Yu B, Jie W J and Zhao Y D 2023 Introduction of defects in hexagonal boron nitride for vacancy-based 2D memristors Nanoscale 15 4309–16

[26]

Ahmed T et al 2019 Multifunctional optoelectronics via harnessing defects in layered black phosphorus Adv. Funct. Mater. 29 1901991

[27]

Wang K Y, Chen J S and Yan X B 2021 MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications Nano Energy 79 105453

[28]

Zhao T S, Zhao C, Xu W Y, Liu Y N, Gao H, Mitrovic I Z, Lim E G, Yang L and Zhao C Z 2021 Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate Adv. Funct. Mater. 31 2106000

[29]

Wang M et al 2018 Robust memristors based on layered two-dimensional materials Nat. Electron. 1 130–6

[30]

Yan X B et al 2019 Vacancy-induced synaptic behavior in 2D WS2 nanosheet–based memristor for low-power neuromorphic computing Small 15 1901423

[31]

Hwang Y, Park B, Hwang S, Choi S W, Kim H S, Kim A R, Choi J W, Yoon J, Kwon J D and Kim Y 2023 A bioinspired ultra flexible artificial van der Waals 2D-MoS2 channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing Small Methods 7 2201719

[32]

Hu W N, Jiang J, Xie D D, Liu B, Yang J L and He J 2019 Proton–electron-coupled MoS2 synaptic transistors with a natural renewable biopolymer neurotransmitter for brain-inspired neuromorphic learning J. Mater. Chem. C 7 682–91

[33]

Meng J L, Wang T Y, Zhu H, Ji L, Bao W Z, Zhou P, Chen L, Sun Q Q and Zhang D W 2022 Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application Nano Lett. 22 81–89

[34]

Wang L, Wang X J, Zhang Y S, Li R L, Ma T, Leng K, Chen Z, Abdelwahab I and Loh K P 2020 Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing Adv. Funct. Mater. 30 2004609

[35]

Zhou Y et al 2022 A reconfigurable two-WSe2-transistor synaptic cell for reinforcement learning Adv. Mater. 34 2107754

[36]

Paul T, Ahmed T, Tiwari K K, Thakur C S and Ghosh A 2019 A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing 2D Mater. 6 045008

[37]

Wang J C, Wang Q L T, Chen Q, Lei T, Lv W M, Tu H Y, Hu R, Wang Y P, Zeng Z M and Ma T Y 2022 A floating-gate-like transistor based on InSe vdW heterostructure with high-performance synaptic characteristics Phys. Status Solidi a 219 2200156

[38]

Hu M, Yu J, Chen Y Y, Wang S Q, Dong B Y, Wang H, He Y H, Ma Y, Zhuge F W and Zhai T Y 2022 A non-linear two-dimensional float gate transistor as a lateral inhibitory synapse for retinal early visual processing Mater. Horiz. 9 2335–44

[39]

Wang X W, Sun Y H and Liu K 2019 Chemical and structural stability of 2D layered materials 2D Mater. 6 042001

[40]

Li L H, Cervenka J, Watanabe K, Taniguchi T and Chen Y 2014 Strong oxidation resistance of atomically thin boron nitride nanosheets ACS Nano 8 1457–62

[41]

Kahng Y H, Lee S, Park W, Jo G, Choe M, Lee J H, Yu H, Lee T and Lee K 2012 Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities Nanotechnology 23 075702

[42]

Guo F, Song M L, Wong M C, Ding R, Io W F, Pang S Y, Jie W J and Hao J H 2022 Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system Adv. Funct. Mater. 32 2108014

[43]

Hou Y-X et al 2021 Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing ACS Nano 15 1497–508

[44]

Chen Z F et al 2023 Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration Int. J. Extrem. Manuf 5 042001

[45]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science 306 666–9

[46]

Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryhänen T and Bailey M J A 2015 Layered memristive and memcapacitive switches for printable electronics Nat. Mater. 14 199–204

[47]

Seo S et al 2018 Artificial optic-neural synapse for colored and color-mixed pattern recognition Nat. Commun. 9 5106

[48]

Das S, Dodda A and Das S 2019 A biomimetic 2D transistor for audiomorphic computing Nat. Commun. 10 3450

[49]

Ding G L et al 2022 Filament engineering of two-dimensional h-BN for a self-power mechano-nociceptor system Small 18 2200185

[50]

Yu J R, Wang Y F, Qin S S, Gao G Y, Xu C, Wang Z L and Sun Q J 2022 Bioinspired interactive neuromorphic devices Mater. Today 60 158–82

[51]

Ilyas N, Wang J Y, Li C M, Li D Y, Fu H, Gu D E, Jiang X D, Liu F C, Jiang Y D and Li W 2022 Nanostructured materials and architectures for advanced optoelectronic synaptic devices Adv. Funct. Mater. 32 2110976

[52]

Cheng Z G, Ríos C, Pernice W H P, Wright C D and Bhaskaran H 2017 On-chip photonic synapse Sci. Adv. 3 e1700160

[53]

Yu J R, Gao G Y, Huang J R, Yang X X, Han J, Zhang H, Chen Y H, Zhao C L, Sun Q J and Wang Z L 2021 Contact-electrification-activated artificial afferents at femtojoule energy Nat. Commun. 12 1581

[54]

Jia M M, Guo P W, Wang W, Yu A F, Zhang Y F, Wang Z L and Zhai J Y 2022 Tactile tribotronic reconfigurable p-n junctions for artificial synapses Sci. Bull. 67 803–12

[55]

Seo S et al 2020 Artificial van der Waals hybrid synapse and its application to acoustic pattern recognition Nat. Commun. 11 3936

[56]

Li F L et al 2021 Bio-inspired multi-mode pain-perceptual system (MMPPS) with noxious stimuli warning, damage localization, and enhanced damage protection Adv. Sci. 8 2004208

[57]

Zhang M Y, Chi Z G, Wang G Q, Fan Z L, Wu H L, Yang P, Yang J B, Yan P G and Sun Z H 2022 An irradiance-adaptable near-infrared vertical heterojunction phototransistor Adv. Mater. 34 2205679

[58]

Xu R J, Jang H, Lee M H, Amanov D, Cho Y, Kim H, Park S, Shin H J and Ham D 2019 Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV Nano Lett. 19 2411–7

[59]

Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Van der Waals heterostructures and devices Nat. Rev. Mater. 1 16042

[60]

Geim A K and Grigorieva I V 2013 Van der Waals heterostructures Nature 499 419–25

[61]

Geim A K and Novoselov K S 2007 The rise of graphene Nat. Mater. 6 183–91

[62]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197–200

[63]

Schwierz F 2010 Graphene transistors Nat. Nanotechnol. 5 487–96

[64]

Wang G R, Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A, Wang Y F, Li B Z, Daly M and Cao C H 2023 Recent advances in the mechanics of 2D materials Int. J. Extrem. Manuf 5 032002

[65]

Zhang Y B, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Direct observation of a widely tunable bandgap in bilayer graphene Nature 459 820–3

[66]

Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Black phosphorus field-effect transistors Nat. Nanotechnol. 9 372–7

[67]

Onodera M, Masubuchi S, Moriya R and Machida T 2020 Assembly of van der Waals heterostructures: exfoliation, searching, and stacking of 2D materials Jpn. J. Appl. Phys. 59 010101

[68]

Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J and Steele G A 2014 Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping 2D Mater. 1 011002

[69]

Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T and Machida T 2019 Dry release transfer of graphene and few-layer h-BN by utilizing thermoplasticity of polypropylene carbonate npj 2D Mater. Appl. 3 22

[70]

Wang L et al 2013 One-dimensional electrical contact to a two-dimensional material Science 342 614–7

[71]

Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K and Gorbachev R 2012 Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices Nat. Mater. 11 764–7

[72]

Watanabe K, Taniguchi T and Kanda H 2004 Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal Nat. Mater. 3 404–9

[73]

Zomer P J, Dash S P, Tombros N and van Wees B J 2011 A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride Appl. Phys. Lett. 99 232104

[74]

Dean C R et al 2010 Boron nitride substrates for high-quality graphene electronics Nat. Nanotechnol. 5 722–6

[75]

Sun L F et al 2019 Self-selective van der Waals heterostructures for large scale memory array Nat. Commun. 10 3161

[76]

Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805

[77]

Yang H, Kim S W, Chhowalla M and Lee Y H 2017 Structural and quantum-state phase transitions in van der Waals layered materials Nat. Phys. 13 931–7

[78]

Sun L F, Zhang Y S, Hwang G, Jiang J B, Kim D, Eshete Y A, Zhao R and Yang H 2018 Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization Nano Lett. 18 3229–34

[79]

Mayorov A S et al 2011 Micrometer-scale ballistic transport in encapsulated graphene at room temperature Nano Lett. 11 2396–9

[80]

Tian H et al 2017 Emulating bilingual synaptic response using a junction-based artificial synaptic device ACS Nano 11 7156–63

[81]

Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71

[82]

Halim U, Zheng C R, Chen Y, Lin Z Y, Jiang S, Cheng R, Huang Y and Duan X F 2013 A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction Nat. Commun. 4 2213

[83]

Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D and Chhowalla M 2014 Phase-engineered low-resistance contacts for ultrathin MoS2 transistors Nat. Mater. 13 1128–34

[84]

Kiriya D, Tosun M, Zhao P D, Kang J S and Javey A 2014 Air-stable surface charge transfer doping of MoS2 by benzyl viologen J. Am. Chem. Soc. 136 7853–6

[85]
Hlaing H, Carta F, Barton R, Nam C Y, Petrone N, Hone J and Kymissis I 2014 Low-power organic electronics based on gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures Proc. 72nd Device Research Conf. (IEEE) pp 279–80
[86]

Leong W S, Gong H and Thong J T L 2014 Low-contact-resistance graphene devices with nickel-etched-graphene contacts ACS Nano 8 994–1001

[87]

Pospischil A, Furchi M M and Mueller T 2014 Solar-energy conversion and light emission in an atomic monolayer p–n diode Nat. Nanotechnol. 9 257–61

[88]

Baugher B W H, Churchill H O H, Yang Y F and Jarillo-Herrero P 2014 Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide Nat. Nanotechnol. 9 262–7

[89]

Poh S M et al 2018 Molecular-beam epitaxy of two-dimensional In2Se3 and its giant electroresistance switching in ferroresistive memory junction Nano Lett. 18 6340–6

[90]

Hall J, Pielić B, Murray C, Jolie W, Wekking T, Busse C, Kralj M and Michely T 2018 Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: a growth study 2D Mater. 5 025005

[91]

Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F, Kim C J, Muller D and Park J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656–60

[92]

Lin Y-C et al 2015 Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures Nat. Commun. 6 7311

[93]

Tan L K, Liu B, Teng J H, Guo S F, Low H Y and Loh K P 2014 Atomic layer deposition of a MoS2 film Nanoscale 6 10584–8

[94]

Kim H M, Kim D G, Kim Y S, Kim M and Park J S 2023 Atomic layer deposition for nanoscale oxide semiconductor thin film transistors: review and outlook Int. J. Extrem. Manuf. 5 012006

[95]

Yang Z B, Jie W J, Mak C H, Lin S H, Lin H H, Yang X F, Yan F, Lau S P and Hao J H 2017 Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse ACS Nano 11 4225–36

[96]

Zheng Z Q, Zhang T M, Yao J D, Zhang Y, Xu J R and Yang G W 2016 Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices Nanotechnology 27 225501

[97]

Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and LeRoy B J 2011 Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride Nat. Mater. 10 282–5

[98]

Abbott L F and Regehr W G 2004 Synaptic computation Nature 431 796–803

[99]

Voglis G and Tavernarakis N 2006 The role of synaptic ion channels in synaptic plasticity EMBO Rep. 7 1104–10

[100]

Zucker R S and Regehr W G 2002 Short-term synaptic plasticity Annu. Rev. Physiol. 64 355–405

[101]

Dan Y and Poo M M 2004 Spike timing-dependent plasticity of neural circuits Neuron 44 23–30

[102]

Chang T, Jo S H and Lu W 2011 Short-term memory to long-term memory transition in a nanoscale memristor ACS Nano 5 7669–76

[103]

Xie D D, Yin K, Yang Z J, Huang H, Li X H, Shu Z W, Duan H G, He J and Jiang J 2022 Polarization-perceptual anisotropic two-dimensional ReS2 neuro-transistor with reconfigurable neuromorphic vision Mater. Horiz. 9 1448–59

[104]

Tang J S et al 2019 Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges Adv. Mater. 31 1902761

[105]

Wang K Y et al 2020 A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator Adv. Electron. Mater. 6 1901342

[106]

Yu T, Zhao Z, Jiang H, Weng Z, Fang Y, Liu C, Lei W, Shafe S B and Mohtar M N 2022 A low-power memristor based on 2H–MoTe2 nanosheets with synaptic plasticity and arithmetic functions Mater. Today Nano 19 100233

[107]

Zhang F, Zhang H R, Krylyuk S, Milligan C A, Zhu Y Q, Zemlyanov D Y, Bendersky L A, Burton B P, Davydov A V and Appenzeller J 2019 Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories Nat. Mater. 18 55–61

[108]

Zhu X J, Li D, Liang X G and Lu W D 2019 Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing Nat. Mater. 18 141–8

[109]

Xu J Q, Leng K M, Huang X X, Ye Y Y and Gong J F 2021 Artificial synapses based on electric stress induced conductance variation in vertical MoReS3 nanosheets Appl. Phys. Lett. 119 263101

[110]

Zhu J D et al 2018 Ion gated synaptic transistors based on 2D van der Waals crystals with tunable diffusive dynamics Adv. Mater. 30 1800195

[111]

He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y and Guo X 2018 Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2 Small 14 1800079

[112]

John R A, Liu F C, Chien N A, Kulkarni M R, Zhu C, Fu Q D, Basu A, Liu Z and Mathews N 2018 Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: coexistence of Hebbian and homeostatic synaptic metaplasticity Adv. Mater. 30 1800220

[113]

Cheng Y C, Li H J W, Liu B, Jiang L Y, Liu M, Huang H, Yang J L, He J and Jiang J 2020 Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical Pavlovian conditioning and neural coding dynamics Small 16 2005217

[114]

Hu Y X et al 2022 Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range ACS Appl. Mater. Interfaces 14 55839–49

[115]

Zhang F Q, Li C Y, Li Z Y, Dong L X and Zhao J 2023 Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications Microsyst. Nanoeng. 9 16

[116]

Li C H, Du W, Liu H Z, Yang M, Xu H, Wu J and Wang Z M 2022 A hippocampus-inspired illumination time-resolved device for neural coding Sci. China Mater. 65 1087–93

[117]

Liu X T, Chen J R, Wang Y, Han S T and Zhou Y 2021 Building functional memories and logic circuits with 2D boron nitride Adv. Funct. Mater. 31 2004733

[118]

Chen L, Pam M E, Li S F and Ang K W 2022 Ferroelectric memory based on two-dimensional materials for neuromorphic computing Neuromorph. Comput. Eng. 2 022001

[119]

Ling H F, Koutsouras D A, Kazemzadeh S, van de Burgt Y, Yan F and Gkoupidenis P 2020 Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing Appl. Phys. Rev. 7 011307

[120]

Kim S H, Hong K, Xie W, Lee K H, Zhang S P, Lodge T P and Frisbie C D 2013 Electrolyte-gated transistors for organic and printed electronics Adv. Mater. 25 1822–46

[121]

Oh S, Lee J H, Seo S, Choo H, Lee D, Cho J I and Park J H 2022 Electrolyte-gated vertical synapse array based on van der Waals heterostructure for parallel computing Adv. Sci. 9 2103808

[122]

Yan S A, Zang J Y, Xu P, Zhu Y F, Li G, Chen Q L, Chen Z J, Zhang Y, Tang M H and Zheng X J 2023 Recent progress in ferroelectric synapses and their applications Sci. China Mater. 66 877–94

[123]

Kim E J, Kim K A and Yoon S M 2016 Investigation of the ferroelectric switching behavior of P(VDF-TrFE)-PMMA blended films for synaptic device applications J. Phys. D: Appl. Phys. 49 075105

[124]

Kaneko Y, Nishitani Y, Tanaka H, Ueda M, Kato Y, Tokumitsu E and Fujii E 2011 Correlated motion dynamics of electron channels and domain walls in a ferroelectric-gate thin-film transistor consisting of a ZnO/Pb(Zr,Ti)O3 stacked structure J. Appl. Phys. 110 084106

[125]

Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y and Zhu W G 2017 Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials Nat. Commun. 8 14956

[126]

Hanakata P Z, Carvalho A, Campbell D K and Park H S 2016 Polarization and valley switching in monolayer group-IV monochalcogenides Phys. Rev. B 94 035304

[127]

Zhao Y et al 2022 Memristor based on α-In2Se3 for emulating biological synaptic plasticity and learning behavior Sci. China Mater. 65 1631–8

[128]

Si M W et al 2019 A ferroelectric semiconductor field-effect transistor Nat. Electron. 2 580–6

[129]

Rodder M A, Vasishta S and Dodabalapur A 2020 Double-gate MoS2 field-effect transistor with a multilayer graphene floating gate: a versatile device for logic, memory, and synaptic applications ACS Appl. Mater. Interfaces 12 33926–33

[130]

Van Tho L, Baeg K J and Noh Y Y 2016 Organic nano-floating-gate transistor memory with metal nanoparticles Nano Converg. 3 10

[131]

Zhang X H, Li E L, Yu R J, He L H, Yu W J, Chen H P and Guo T L 2022 Floating-gate based PN blending optoelectronic synaptic transistor for neural machine translation Sci. China Mater. 65 1383–90

[132]

Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y and Han S T 2018 Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites Adv. Funct. Mater. 28 1805599

[133]

Ye L, Li H, Chen Z F and Xu J B 2016 Near-infrared photodetector based on MoS2/black phosphorus heterojunction ACS Photonics 3 692–9

[134]

Mao J Y, Zhou L, Zhu X J, Zhou Y and Han S T 2019 Photonic memristor for future computing: a perspective Adv. Opt. Mater. 7 1900766

[135]

Feng X W, Liu X K and Ang K W 2020 2D photonic memristor beyond graphene: progress and prospects Nanophotonics 9 1579–99

[136]

Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L and Wan Q 2019 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration Nanoscale 11 1360–9

[137]

Wang S Y et al 2019 A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility Adv. Mater. 31 1806227

[138]

Li M J et al 2021 Defect engineering in ambipolar layered materials for mode-regulable nociceptor Adv. Funct. Mater. 31 2007587

[139]

Liao F Y et al 2022 Bioinspired in-sensor visual adaptation for accurate perception Nat. Electron. 5 84–91

[140]

Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J and Mueller T 2020 Ultrafast machine vision with 2D material neural network image sensors Nature 579 62–66

[141]

Tan Y L, Hao H, Chen Y B, Kang Y, Xu T, Li C, Xie X N and Jiang T 2022 A bioinspired retinomorphic device for spontaneous chromatic adaptation Adv. Mater. 34 2206816

[142]

Liu Q H et al 2022 Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system Nano Energy 102 107686

[143]

Islam M M et al 2022 Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition ACS Nano 16 10188–98

[144]

Wang C-Y et al 2020 Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor Sci. Adv. 6 eaba6173

[145]

Hou X, Liu C S, Ding Y, Liu L, Wang S Y and Zhou P 2020 A logic-memory transistor with the integration of visible information sensing-memory-processing Adv. Sci. 7 2002072

[146]
Alexander K R 2010 Information processing: retinal adaptation Encyclopedia of the Eye ed D A Dartt (Elsevier) pp 379–86
[147]

Hong S, Choi S H, Park J, Yoo H, Oh J Y, Hwang E, Yoon D H and Kim S 2020 Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure ACS Nano 14 9796–806

[148]

Xie D D, Wei L B, Xie M, Jiang L Y, Yang J L, He J and Jiang J 2021 Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor Adv. Funct. Mater. 31 2010655

[149]

Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D and Zhou P 2022 All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition Nat. Nanotechnol. 17 27–32

[150]

Xie D D, Gao G, Tian B B, Shu Z W, Duan H G, Zhao W W, He J and Jiang J 2023 Porous metal–organic framework/ReS2 heterojunction phototransistor for polarization-sensitive visual adaptation emulation Adv. Mater. 35 2212118

[151]

Chen J W, Zhou Z, Kim B J, Zhou Y, Wang Z Q, Wan T Q, Yan J M, Kang J F, Ahn J H and Chai Y 2023 Optoelectronic graded neurons for bioinspired in-sensor motion perception Nat. Nanotechnol. 18 882–8

[152]

Jeffress L A 1948 A place theory of sound localization J. Comp. Physiol. Psychol. 41 35–39

[153]

Wightman F L and Kistler D J 1992 The dominant role of low-frequency interaural time differences in sound localization J. Acoust. Soc. Am. 91 1648–61

[154]

Liao X Q, Song W T, Zhang X Y, Yan C Q, Li T L, Ren H L, Liu C Z, Wang Y T and Zheng Y J 2020 A bioinspired analogous nerve towards artificial intelligence Nat. Commun. 11 268

[155]

Chen Y H et al 2019 Piezotronic graphene artificial sensory synapse Adv. Funct. Mater. 29 1900959

[156]

Shan L T, Liu Y Q, Zhang X H, Li E L, Yu R J, Lian Q M, Chen X, Chen H P and Guo T L 2021 Bioinspired kinesthetic system for human-machine interaction Nano Energy 88 106283

[157]

Zhang C, Zhao J Q, Zhang Z, Bu T Z, Liu G X and Fu X P 2023 Tribotronics: an emerging field by coupling triboelectricity and semiconductors Int. J. Extrem. Manuf 5 042002

[158]

Cao Y X et al 2023 Biodegradable and flexible artificial nociceptor based on Mg/MgO threshold switching memristor Sci. China Mater. 66 1569–77

[159]

Feng G D, Jiang J, Li Y R, Xie D D, Tian B B and Wan Q 2021 Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor Adv. Funct. Mater. 31 2104327

[160]

Kim Y et al 2018 Nociceptive memristor Adv. Mater. 30 1704320

[161]

Xiao M, Shen D Z, Futscher M H, Ehrler B, Musselman K P, Duley W W and Zhou Y N 2020 Threshold switching in single metal-oxide nanobelt devices emulating an artificial nociceptor Adv. Electron. Mater. 6 1900595

[162]

Dev D, Shawkat M S, Krishnaprasad A, Jung Y and Roy T 2020 Artificial nociceptor using 2D MoS2 threshold switching memristor IEEE Electron Device Lett. 41 1440–3

[163]

Kumar M, Kim H S and Kim J 2019 A highly transparent artificial photonic nociceptor Adv. Mater. 31 1900021

[164]

Hucho T and Levine J D 2007 Signaling pathways in sensitization: toward a nociceptor cell biology Neuron 55 365–76

[165]

Li X S et al 2009 Large-area synthesis of high-quality and uniform graphene films on copper foils Science 324 1312–4

[166]

Chen M K, Wang Y F, Shepherd N, Huard C, Zhou J T, Guo L J, Lu W and Liang X G 2017 Abnormal multiple charge memory states in exfoliated few-layer WSe2 transistors ACS Nano 11 1091–102

[167]

Yang P F et al 2018 Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass Nat. Commun. 9 979

[168]

Wang T, Huang H M, Wang X X and Guo X 2021 An artificial olfactory inference system based on memristive devices InfoMat 3 804–13

[169]

Han J K, Kang M G, Jeong J, Cho I, Yu J M, Yoon K J, Park I and Choi Y K 2022 Artificial olfactory neuron for an in-sensor neuromorphic nose Adv. Sci. 9 2106017

[170]

Park S J, Kwon O S, Lee S H, Song H S, Park T H and Jang J 2012 Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose Nano Lett. 12 5082–90

International Journal of Extreme Manufacturing
Article number: 032003
Cite this article:
Huang Z, Li Y, Zhang Y, et al. 2D multifunctional devices: from material preparation to device fabrication and neuromorphic applications. International Journal of Extreme Manufacturing, 2024, 6(3): 032003. https://doi.org/10.1088/2631-7990/ad2e13

228

Views

9

Downloads

8

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 31 July 2023
Revised: 03 November 2023
Accepted: 27 February 2024
Published: 13 March 2024
© 2024 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return