Embedded memory, which heavily relies on the manufacturing process, has been widely adopted in various industrial applications. As the field of embedded memory continues to evolve, innovative strategies are emerging to enhance performance. Among them, resistive random access memory (RRAM) has gained significant attention due to its numerous advantages over traditional memory devices, including high speed (<1 ns), high density (4 F2·n−1), high scalability (~nm), and low power consumption (~pJ). This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potential applications. It provides a brief introduction to the concepts and advantages of RRAM, discusses the key factors that impact its industrial manufacturing, and presents the commercial progress driven by cutting-edge nanotechnology, which has been pursued by many semiconductor giants. Additionally, it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing, with a particular emphasis on its role in neuromorphic computing. Finally, the review discusses the current challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
Wang G R, Hou H Y, Yan Y F, Jagatramka R, Shirsalimian A, Wang Y F, Li B Z, Daly M and Cao C H 2023 Recent advances in the mechanics of 2D materials Int. J. Extrem. Manuf. 5 032002
Kim S K and Popovici M 2018 Future of dynamic random-access memory as main memory MRS Bull. 43 334–9
El-Kareh B, Bronner G B and Schuster S E 1997 The evolution of DRAM cell technology Solid State Technol. 40 89–101
Molas G and Nowak E 2021 Advances in emerging memory technologies: from data storage to artificial intelligence Appl. Sci. 11 11254
Umemoto Y et al 2014 28 nm 50% power-reducing contacted mask read only memory macro with 0.72-ns read access time using 2T pair bitcell and dynamic column source bias control technique IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 575–84
Vujisic M, Osmokrovic P and Loncar B 2007 Gamma irradiation effects in programmable read only memories J. Phys. D: Appl. Phys. 40 5785–9
Lee K H, Wang S C and King Y C 2005 Self-convergent scheme for logic-process-based multilevel/analog memory IEEE Trans. Electron Devices 52 2676–81
Kim S S, Yong S K, Kim W, Kang S, Park H W, Yoon K J, Sheen D S, Lee S and Hwang C S 2023 Review of semiconductor flash memory devices for material and process issues Adv. Mater. 35 2200659
Bez R, Camerlenghi E, Modelli A and Visconti A 2003 Introduction to flash memory Proc. IEEE 91 489–502
Pan F, Gao S, Chen C, Song C and Zeng F 2014 Recent progress in resistive random access memories: materials, switching mechanisms, and performance Mater. Sci. Eng. R 83 1–59
Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L and Visconti A 2017 Reviewing the evolution of the NAND flash technology Proc. IEEE 105 1609–33
Scott J F and De Araujo C A P 1989 Ferroelectric memories Science 246 1400–5
Tehrani S, Slaughter J M, Chen E, Durlam M, Shi J and DeHerren M 1999 Progress and outlook for MRAM technology IEEE Trans. Magn. 35 2814–9
Wuttig M and Yamada N 2007 Phase-change materials for rewriteable data storage Nat. Mater. 6 824–32
Xie Y 2011 Modeling, architecture, and applications for emerging memory technologies IEEE Des. Test Comput. 28 44–51
Dor O B, Yochelis S, Mathew S P, Naaman R and Paltiel Y 2013 A chiral-based magnetic memory device without a permanent magnet Nat. Commun. 4 2256
Maffitt T M, DeBrosse J K, Gabric J A, Gow E T, Lamorey M C, Parenteau J S, Willmott D R, Wood M A and Gallagher W J 2006 Design considerations for MRAM IBM J. Res. Dev. 50 25–39
Lee K and Kang S H 2011 Development of embedded STT-MRAM for mobile system-on-chips IEEE Trans. Magn. 47 131–6
Auciello O, Scott J F and Ramesh R 1998 The physics of ferroelectric memories Phys. Today 51 22–27
Setter N et al 2006 Ferroelectric thin films: review of materials, properties, and applications J. Appl. Phys. 100 051606
Fontanini R et al 2022 Interplay between charge trapping and polarization switching in BEOL-compatible bilayer ferroelectric tunnel junctions IEEE J. Electron Devices Soc. 10 593–9
Park J Y et al 2023 Revival of ferroelectric memories based on emerging fluorite-structured ferroelectrics Adv. Mater. 35 2204904
Si M W et al 2019 A ferroelectric semiconductor field-effect transistor Nat. Electron. 2 580–6
Ren C L et al 2020 Highly robust flexible ferroelectric field effect transistors operable at high temperature with low-power consumption Adv. Funct. Mater. 30 1906131
Kim J Y, Choi M J and Jang H W 2021 Ferroelectric field effect transistors: progress and perspective APL Mater. 9 021102
Wang S Y, Liu L, Gan L R, Chen H W, Hou X, Ding Y, Ma S L, Zhang D W and Zhou P 2021 Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing Nat. Commun. 12 53
Wang L, Wang X J, Zhang Y S, Li R L, Ma T, Leng K, Chen Z, Abdelwahab I and Loh K P 2020 Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing Adv. Funct. Mater. 30 2004609
Ovshinsky S R 1968 Reversible electrical switching phenomena in disordered structures Phys. Rev. Lett. 21 1450–3
Le Gallo M and Sebastian A 2020 An overview of phase-change memory device physics J. Phys. D: Appl. Phys. 53 213002
Salinga M and Wuttig M 2011 Phase-change memories on a diet Science 332 543–4
Cappelletti P, Annunziata R, Arnaud F, Disegni F, Maurelli A and Zuliani P 2020 Phase change memory for automotive grade embedded NVM applications J. Phys. D: Appl. Phys. 53 193002
Hady F T, Foong A, Veal B and Williams D 2017 Platform storage performance with 3D XPoint technology Proc. IEEE 105 1822–33
Wong H S P, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Metal-oxide RRAM Proc. IEEE 100 1951–70
Ielmini D 2016 Resistive switching memories based on metal oxides: mechanisms, reliability and scaling Semicond. Sci. Technol. 31 063002
Bernard Y, Renard V T, Gonon P and Jousseaume V 2011 Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2 Microelectron. Eng. 88 814–6
Goux L and Valov I 2016 Electrochemical processes and device improvement in conductive bridge RAM cells Phys. Status Solidi a 213 274–88
Chang W Y, Huang H W, Wang W T, Hou C H, Chueh Y L and He J H 2012 High uniformity of resistive switching characteristics in a Cr/ZnO/Pt device J. Electrochem. Soc. 159 G29–32
Chen C, Gao S, Zeng F, Tang G S, Li S Z, Song C, Fu H D and Pan F 2013 Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices J. Appl. Phys. 114 014502
Tang G S, Zeng F, Chen C, Liu H Y, Gao S, Li S Z, Song C, Wang G Y and Pan F 2013 Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation J. Appl. Phys. 113 244502
Liu X J, Li X M, Yu W D, Wang Q, Yang R, Cao X and Chen L D 2009 Bipolar resistance switching property of Al-Ag/La0.7Ca0.3MnO3/Pt sandwiches J. Ceram. Soc. Japan 117 732–5
Tang G S, Zeng F, Chen C, Gao S, Fu H D, Song C, Wang G Y and Pan F 2013 Resistive switching behaviour of a tantalum oxide nanolayer fabricated by plasma oxidation Phys. Status Solidi 7 282–4
Vasileiadis N, Loukas P, Karakolis P, Ioannou-Sougleridis V, Normand P, Ntinas V, Fyrigos I A, Karafyllidis I, Sirakoulis G C and Dimitrakis P 2021 Multi-level resistance switching and random telegraph noise analysis of nitride based memristors Chaos Solitons Fractals 153 111533
Kim H D, An H M, Hong S M and Kim T G 2012 Unipolar resistive switching phenomena in fully transparent SiN-based memory cells Semicond. Sci. Technol. 27 125020
Joo W J, Choi T L, Lee J, Lee S K, Jung M S, Kim N and Kim J M 2006 Metal filament growth in electrically conductive polymers for nonvolatile memory application J. Phys. Chem. B 110 23812–6
Joo W J, Choi T L, Lee K H and Chung Y 2007 Study on threshold behavior of operation voltage in metal filament-based polymer memory J. Phys. Chem. B 111 7756–60
Li Y B, Sinitskii A and Tour J M 2008 Electronic two-terminal bistable graphitic memories Nat. Mater. 7 966–71
Zhao J W, Sun J, Huang H Q, Liu F J, Hu Z F and Zhang X Q 2012 Effects of ZnO buffer layer on GZO RRAM devices Appl. Surf. Sci. 258 4588–91
Fujimoto M, Koyama H, Konagai M, Hosoi Y, Ishihara K, Ohnishi S and Awaya N 2006 TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching Appl. Phys. Lett. 89 223509
Lee H D, Magyari-Köpe B and Nishi Y 2010 Model of metallic filament formation and rupture in NiO for unipolar switching Phys. Rev. B 81 193202
Yu S M and Wong H S P 2010 A phenomenological model for the reset mechanism of metal oxide RRAM IEEE Electron Device Lett. 31 1455–7
Boudsocq M, Willmann M R, McCormack M, Lee H, Shan L B, He P, Bush J, Cheng S H and Sheen J 2010 Differential innate immune signalling via Ca2+ sensor protein kinases Nature 464 418–22
Cui X L, Ma X, Lin Q J, Li X, Zhou H and Cui X X 2020 Design of high-speed logic circuits with four-step RRAM-based logic gates Circuits Syst. Signal Process. 39 2822–40
Yu S M, Gao B, Fang Z, Yu H Y, Kang J F and Wong H S P 2013 A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation Adv. Mater. 25 1774–9
Pi S, Li C, Jiang H, Xia W W, Xin H L, Yang J J and Xia Q F 2019 Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension Nat. Nanotechnol. 14 35–39
Ye C, Wu J J, Pan C H, Tsai T M, Chang K C, Wu H Q, Deng N and Qian H 2017 Boosting the performance of resistive switching memory with a transparent ITO electrode using supercritical fluid nitridation RSC Adv. 7 11585–90
Petzold S, Sharath S U, Lemke J, Hildebrandt E, Trautmann C and Alff L 2019 Heavy ion radiation effects on hafnium oxide-based resistive random access memory IEEE Trans. Nucl. Sci. 66 1715–8
Yu S M, Shim W, Peng X C and Luo Y D 2021 RRAM for compute-in-memory: from inference to training IEEE Trans. Circuits Syst. I 68 2753–65
Wan W E et al 2022 A compute-in-memory chip based on resistive random-access memory Nature 608 504–12
Torrezan A C, Strachan J P, Medeiros-Ribeiro G and Williams R S 2011 Sub-nanosecond switching of a tantalum oxide memristor Nanotechnology 22 485203
Choi B J, Torrezan A C, Norris K J, Miao F, Strachan J P, Zhang M X, Ohlberg D A A, Kobayashi N P, Yang J J and Williams R S 2013 Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch Nano Lett. 13 3213–7
Lee M-J et al 2011 A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures Nat. Mater. 10 625–30
Yang J J, Zhang M X, Strachan J P, Miao F, Pickett M D, Kelley R D, Medeiros-Ribeiro G and Williams R S 2010 High switching endurance in TaOx memristive devices Appl. Phys. Lett. 97 232102
Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G and Williams R S 2011 Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor Adv. Mater. 23 5633–40
Yang J J et al 2012 Engineering nonlinearity into memristors for passive crossbar applications Appl. Phys. Lett. 100 113501
Jana D, Dutta M, Samanta S and Maikap S 2014 RRAM characteristics using a new Cr/GdOx/TiN structure Nanoscale Res. Lett. 9 680
Lin Y-D et al 2017 Retention model of TaO/HfOx and TaO/AlOx RRAM with self-rectifying switch characteristics Nanoscale Res. Lett. 12 407
Kim S, Abbas Y, Jeon Y R, Sokolov A S, Ku B and Choi C 2018 Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device Nanotechnology 29 415204
Kim D, Kim J and Kim S 2022 Enhancement of resistive and synaptic characteristics in tantalum oxide-based RRAM by nitrogen doping Nanomaterials 12 3334
Yang J J, Choi B J, Zhang M X, Torrezan A C, Strachan J P and Williams R S 2013 Memristive devices for computing: mechanisms, applications and challenges ECS Trans. 58 9
Wang Y et al 2010 Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications Nanotechnology 21 045202
Yuan F-Y et al 2017 Conduction mechanism and improved endurance in HfO2-based RRAM with nitridation treatment Nanoscale Res. Lett. 12 574
Lin J F, Wang S L and Liu H X 2021 Multi-level switching of al-doped HfO2 RRAM with a single voltage amplitude set pulse Electronics 10 731
Roy S et al 2020 Toward a reliable synaptic simulation using Al-doped HfO2 RRAM ACS Appl. Mater. Interfaces 12 10648–56
Jeong H Y, Lee J Y and Choi S Y 2010 Interface-engineered amorphous TiO2-based resistive memory devices Adv. Funct. Mater. 20 3912–7
Kwon D-H et al 2010 Atomic structure of conducting nanofilaments in TiO2 resistive switching memory Nat. Nanotechnol. 5 148–53
Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 ‘Memristive’ switches enable ‘stateful’ logic operations via material implication Nature 464 873–6
Hickmott T W 1962 Low-frequency negative resistance in thin anodic oxide films J. Appl. Phys. 33 2669–82
Wu Y, Lee B and Wong H S P 2010 Al2O3-based RRAM using atomic layer deposition (ALD) with 1-µA RESET current IEEE Electron Device Lett. 31 1449–51
Liang J L and Wong H S P 2010 Cross-point memory array without cell selectors—device characteristics and data storage pattern dependencies IEEE Trans. Electron Devices 57 2531–8
Huang X D, Li Y, Li H Y, Lu Y F, Xue K H and Miao X S 2020 Enhancement of DC/AC resistive switching performance in AlOx memristor by two-technique bilayer approach Appl. Phys. Lett. 116 173504
Zhao Y, Liu W Q, Zhao J Y, Wang Y S, Zheng J T, Liu J Y, Hong W J and Tian Z Q 2022 The fabrication, characterization and functionalization in molecular electronics Int. J. Extrem. Manuf. 4 022003
Tsuruoka T, Terabe K, Hasegawa T, Valov I, Waser R and Aono M 2012 Effects of moisture on the switching characteristics of oxide-based, gapless-type atomic switches Adv. Funct. Mater. 22 70–77
Park K-T et al 2015 Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming IEEE J. Solid-State Circuits 50 204–13
Chen Z, Zhang F F, Chen B, Zheng Y, Gao B, Liu L F, Liu X Y and Kang J F 2015 High-performance HfOx/AlOy-based resistive switching memory cross-point array fabricated by atomic layer deposition Nanoscale Res. Lett. 10 70
Banerjee W, Xu X X, Liu H T, Lv H B, Liu Q, Sun H T, Long S B and Liu M 2015 Occurrence of resistive switching and threshold switching in atomic layer deposited ultrathin (2 nm) aluminium oxide crossbar resistive random access memory IEEE Electron Device Lett. 36 333–5
Zhang W G, Gao H, Deng C, Lv T, Hu S, Wu H, Xue S, Tao Y, Deng L and Xiong W 2021 An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction Nanoscale 13 11497–504
Ma Z L, Ge J, Chen W J, Cao X C, Diao S Q, Liu Z Y and Pan S S 2022 Reliable memristor based on ultrathin native silicon oxide ACS Appl. Mater. Interfaces 14 21207–16
Yin L, Cheng R Q, Wen Y, Zhai B X, Jiang J, Wang H, Liu C S and He J 2022 High-performance memristors based on ultrathin 2D copper chalcogenides Adv. Mater. 34 2108313
Zhao L, Chen H Y, Wu S C, Jiang Z, Yu S, Hou T H, Wong H S P and Nishi Y 2014 Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations Nanoscale 6 5698–702
Gao B et al 2014 3D cross-point array operation on AlOy/HfOx-based vertical resistive switching memory IEEE Trans. Electron Devices 61 1377–81
Wu T F et al 2018 Hyperdimensional computing exploiting carbon nanotube FETs, resistive RAM, and their monolithic 3D integration IEEE J. Solid-State Circuits 53 3183–96
Le B Q, Grossi A, Vianello E, Wu T, Lama G, Beigne E, Wong H S P and Mitra S 2019 Resistive RAM with multiple bits per cell: array-level demonstration of 3 bits per cell IEEE Trans. Electron Devices 66 641–6
Hsieh E R et al 2017 A 14-nm FinFET logic CMOS process compatible RRAM flash with excellent immunity to sneak path IEEE Trans. Electron Devices 64 4910–8
Lohn A J, Stevens J E, Mickel P R, Hughart D R and Marinella M J 2013 A CMOS compatible, forming free TaOx ReRAM ECS Trans. 58 59–65
Zhang Y, Zhao X L, Ma X L, Liu Y, Zhou X Z, Zhang M Y, Xu G W and Long S B 2022 CMOS-compatible wafer-scale Si subulate array for superb switching uniformity of RRAM with localized nanofilaments Sci. China Mater. 65 1623–30
Tanachutiwat S, Liu M and Wang W 2011 FPGA based on integration of CMOS and RRAM IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19 2023–32
Cong J and Xiao B J 2014 FPGA-RPI: a novel FPGA architecture with RRAM-based programmable interconnects IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22 864–77
Bai X et al 2022 Via-switch FPGA: 65-nm CMOS implementation and evaluation IEEE J. Solid-State Circuits 57 2250–62
Chien T K, Chiou L Y, Sheu S S, Lin J C, Lee C C, Ku T K, Tsai M J and Wu C I 2016 Low-power MCU with embedded ReRAM buffers as sensor hub for IoT applications IEEE J. Emerg. Sel. Top. Circuits Syst. 6 247–57
Yoon J H, Chang M, Khwa W S, Chih Y D, Chang M F and Raychowdhury A 2022 A 40-nm, 64-kb, 56.67 TOPS/W voltage-sensing computing-in-memory/digital RRAM macro supporting iterative write with verification and online read-disturb detection IEEE J. Solid-State Circuits 57 68–79
Yan B N, Li B, Qiao X M, Xue C X, Chang M F, Chen Y R and Li H 2019 Resistive memory-based in-memory computing: from device and large-scale integration system perspectives Adv. Intell. Syst. 1 1900068
Pyo Y, Woo J U, Hwang H G, Nahm S and Jeong J 2021 Effect of oxygen vacancy on the conduction modulation linearity and classification accuracy of Pr0.7Ca0.3MnO3 memristor Nanomaterials 11 2684
Li C et al 2018 Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–59
Wang N, Zhang J N, Liu Z Y, Ding C, Sui G R, Jia H Z and Gao X M 2021 An enhanced thermoelectric collaborative cooling system with thermoelectric generator serving as a supplementary power source IEEE Trans. Electron Devices 68 1847–54
Theis T N and Wong H S P 2017 The end of Moore’s law: a new beginning for information technology Comput. Sci. Eng. 19 41–50
Ielmini D and Milo V 2017 Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications J. Comput. Electron. 16 1121–43
Zhu Y X, Mao H W, Zhu Y, Wang X J, Fu C Y, Ke S, Wan C J and Wan Q 2023 CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review Int. J. Extrem. Manuf. 5 042010
Maass W 1997 Fast sigmoidal networks via spiking neurons Neural Comput. 9 279–304
Cao Y Q, Chen Y and Khosla D 2015 Spiking deep convolutional neural networks for energy-efficient object recognition Int. J. Comput. Vis. 113 54–66
Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 117 500–44
Guo Y L, Wu H Q, Gao B and Qian H 2019 Unsupervised learning on resistive memory array based spiking neural networks Front. Neurosci. 13 812
Izhikevich E M 2003 Simple model of spiking neurons IEEE Trans. Neural Netw. 14 1569–72
Van De Burgt Y and Gkoupidenis P 2020 Organic materials and devices for brain-inspired computing: from artificial implementation to biophysical realism MRS Bull. 45 631–40
Abbott L F 1999 Lapicque’s introduction of the integrate-and-fire model neuron (1907) Brain Res. Bull. 50 303–4
Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73
Park J, Lee J and Jeon D 2020 A 65-nm neuromorphic image classification processor with energy-efficient training through direct spike-only feedback IEEE J. Solid-State Circuits 55 108–19
Yu Q, Tang H J, Tan K C and Li H Z 2013 Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns PLoS One 8 e78318
Lee M K F, Cui Y N, Somu T, Luo T, Zhou J, Tang W T, Wong W F and Goh R S M 2019 A system-level simulator for RRAM-based neuromorphic computing chips ACM Trans. Archit. Code Optim. 15 64
Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 A scalable neuristor built with Mott memristors Nat. Mater. 12 114–7
Zhang Y S et al 2018 Highly compact artificial memristive neuron with low energy consumption Small 14 1802188
Duan Q X, Jing Z K, Zou X L, Wang Y H, Yang K, Zhang T, Wu S, Huang R and Yang Y C 2020 Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks Nat. Commun. 11 3399
Shaban A, Bezugam S S and Suri M 2021 An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation Nat. Commun. 12 4234
Mostafa H, Khiat A, Serb A, Mayr C G, Indiveri G and Prodromakis T 2015 Implementation of a spike-based perceptron learning rule using TiO2−x memristors Front. Neurosci. 9 357
Berdan R, Vasilaki E, Khiat A, Indiveri G, Serb A and Prodromakis T 2016 Emulating short-term synaptic dynamics with memristive devices Sci. Rep. 6 18639
Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8
Zhang Y S, Zhong S, Song L, Ji X L and Zhao R 2018 Emulating dynamic synaptic plasticity over broad timescales with memristive device Appl. Phys. Lett. 113 203102
Zhang W Q, Gao B, Tang J S, Yao P, Yu S M, Chang M F, Yoo H J, Qian H and Wu H Q 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82
Shafiee A, Nag A, Muralimanohar N, Balasubramonian R, Strachan J P, Hu M, Williams R S and Srikumar V 2016 ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars ACM SIGARCH Comput. Archit. News 44 14–26
Xia L X, Liu M Y, Ning X F, Chakrabarty K and Wang Y 2019 Fault-tolerant training enabled by on-line fault detection for RRAM-based neural computing systems IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 38 1611–24