AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Topical Review | Open Access

Two-photon polymerization lithography for imaging optics

Hao Wang1,2,3Cheng-Feng Pan2,4Chi Li5Kishan S Menghrajani5Markus A Schmidt6,7,8Aoling Li1,3Fu Fan1,3Yu Zhou1,3Wang Zhang2Hongtao Wang2,4Parvathi Nair Suseela Nair9John You En Chan2Tomohiro Mori10Yueqiang Hu1,3Guangwei Hu11Stefan A Maier5,12Haoran Ren5 ( )Huigao Duan1,3 ( )Joel K W Yang2,9 ( )
College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, People’s Republic of China
Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People’s Republic of China
Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
School of Physics and Astronomy, Faculty of Science, Monash University, Melbourne, Victoria 3800, Australia
Leibniz Institute of Photonic Technology, 07745 Jena, Germany
Abbe Center of Photonics and Faculty of Physics, FSU Jena, 07745 Jena, Germany
Otto Schott Institute of Material Research, FSU Jena, 07745 Jena, Germany
Institute of Materials Research and Engineering, A*STAR (Agency for Science Technology and Research), Singapore 138634, Singapore
Industrial Technology Center of Wakayama Prefecture, Wakayama 6496261, Japan
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
Show Author Information

Abstract

Optical imaging systems have greatly extended human visual capabilities, enabling the observation and understanding of diverse phenomena. Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives. Traditional glass lenses are fabricated through a series of complex processes, while polymers offer versatility and ease of production. However, modern applications often require complex lens assemblies, driving the need for miniaturization and advanced designs with micro- and nanoscale features to surpass the capabilities of traditional fabrication methods. Three-dimensional (3D) printing, or additive manufacturing, presents a solution to these challenges with benefits of rapid prototyping, customized geometries, and efficient production, particularly suited for miniaturized optical imaging devices. Various 3D printing methods have demonstrated advantages over traditional counterparts, yet challenges remain in achieving nanoscale resolutions. Two-photon polymerization lithography (TPL), a nanoscale 3D printing technique, enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin. It offers unprecedented abilities, e.g. alignment-free fabrication, micro- and nanoscale capabilities, and rapid prototyping of almost arbitrary complex 3D nanostructures. In this review, we emphasize the importance of the criteria for optical performance evaluation of imaging devices, discuss material properties relevant to TPL, fabrication techniques, and highlight the application of TPL in optical imaging. As the first panoramic review on this topic, it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics, promoting a deeper understanding of the field. By leveraging on its high-resolution capability, extensive material range, and true 3D processing, alongside advances in materials, fabrication, and design, we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.

References

[1]
Goodman J W 2005 Introduction to Fourier Optics 3rd edn (Roberts & Co. Publishers)
[2]
Gu M 2000 Advanced Optical Imaging Theory (Springer) pp 1–5
[3]
Braat J and Török P 2019 Imaging Optics (Cambridge University Press)
[4]

Miller D A B 2023 Why optics needs thickness Science 379 41–45

[5]

Engelberg J and Levy U 2020 The advantages of metalenses over diffractive lenses Nat. Commun. 11 1991

[6]

Banerji S, Meem M, Majumder A, Vasquez F G, Sensale-Rodriguez B and Menon R 2019 Imaging with flat optics: metalenses or diffractive lenses? Optica 6 805–10

[7]

Tan N Y J, Zhang X Q, Neo D W K, Huang R, Liu K and Senthil Kumar A 2021 A review of recent advances in fabrication of optical Fresnel lenses J. Manuf. Process. 71 113–33

[8]

Shusteff M, Browar A E M, Kelly B E, Henriksson J, Weisgraber T H, Panas R M, Fang N X and Spadaccini C M 2017 One-step volumetric additive manufacturing of complex polymer structures Sci. Adv. 3 eaao5496

[9]

Kelly B E, Bhattacharya I, Heidari H, Shusteff M, Spadaccini C M and Taylor H K 2019 Volumetric additive manufacturing via tomographic reconstruction Science 363 1075–9

[10]

Regehly M, Garmshausen Y, Reuter M, König N F, Israel E, Kelly D P, Chou C Y, Koch K, Asfari B and Hecht S 2020 Xolography for linear volumetric 3D printing Nature 588 620–4

[11]

Camposeo A, Persano L, Farsari M and Pisignano D 2019 Additive manufacturing: applications and directions in photonics and optoelectronics Adv. Opt. Mater. 7 1800419

[12]

Geisler E, Lecompère M and Soppera O 2022 3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances Photon. Res. 10 1344–60

[13]

Wang H et al 2023 Two-photon polymerization lithography for optics and photonics: fundamentals, materials, technologies, and applications Adv. Funct. Mater. 33 2214211

[14]

Skliutas E et al 2023 X-photon laser direct write 3D nanolithography Virtual Phys. Prototyp. 18 e2228324

[15]

Sugioka K and Cheng Y 2014 Femtosecond laser three-dimensional micro- and nanofabrication Appl. Phys. Rev. 1 041303

[16]

Melzer J E and McLeod E 2020 3D nanophotonic device fabrication using discrete components Nanophotonics 9 1373–90

[17]

Harinarayana V and Shin Y C 2021 Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review Opt. Laser Technol. 142 107180

[18]

Lee K S, Yang D Y, Park S H and Kim R H 2006 Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications Polym. Adv. Technol. 17 72–82

[19]

Cantoni F, Maher D, Bosler E, Kühne S, Barbe L, Oberschmidt D, Marquette C, Taboryski R, Tenje M and Bunea A I 2023 Round-robin testing of commercial two-photon polymerization 3D printers Addit. Manuf. 76 103761

[20]

Florea L, Blasco E and Mattoli V 2023 New frontiers in materials and technologies for 3D two photon polymerization Adv. Funct. Mater. 33 2305697

[21]

Carlotti M and Mattoli V 2019 Functional materials for two-photon polymerization in microfabrication Small 15 1902687

[22]

Nair P N S, Pan C F, Wang H, Arora D, Wu Q Y S, Rahman M A, Teng J H and Yang J K W 2023 Fabrication of opaque and transparent 3D structures using a single material via two-photon polymerisation lithography Light Adv. Manuf. 4 243–50

[23]

Dong B et al 2023 Femtosecond laser micromachining optical devices Opto-Electron. Eng. 50 220073

[24]

Gonzalez-Hernandez D, Varapnickas S, Bertoncini A, Liberale C and Malinauskas M 2023 Micro-optics 3D printed via multi-photon laser lithography Adv. Opt. Mater. 11 2201701

[25]

Greant C, Van Durme B, Van Hoorick J and Van Vlierberghe S 2023 Multiphoton lithography as a promising tool for biomedical applications Adv. Funct. Mater. 33 2212641

[26]

Liu S F, Hou Z W, Lin L H, Li Z C and Sun H B 2023 3D laser nanoprinting of functional materials Adv. Funct. Mater. 33 2211280

[27]

Zhang Y X, Wu D, Zhang Y C, Bian Y C, Wang C W, Li J W, Chu J R and Hu Y L 2023 Femtosecond laser direct writing of functional stimulus-responsive structures and applications Int. J. Extrem. Manuf. 5 042012

[28]

O’Halloran S, Pandit A, Heise A and Kellett A 2023 Two-photon polymerization: fundamentals, materials, and chemical modification strategies Adv. Sci. 10 2204072

[29]

Zhao Y Y, Jin F, Dong X Z, Zheng M L and Duan X M 2023 Femtosecond laser two-photon polymerization three-dimensional micro-nanofabrication technology Opto-Electron. Eng. 50 220048

[30]

Pan C F et al 2023 3D-printed multilayer structures for high-numerical aperture achromatic metalenses Sci. Adv. 9 adj9262

[31]

Zuo C and Chen Q 2022 Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks Light Sci. Appl. 11 208

[32]

Zou X J, Zhang Y M, Lin R Y, Gong G X, Wang S M, Zhu S N and Wang Z L 2022 Pixel-level Bayer-type colour router based on metasurfaces Nat. Commun. 13 3288

[33]
Fischer R E, Tadic-Galeb B and Yoder P R 2008 Optical System Design 2nd edn (McGraw-Hill) p 89
[34]

Jiang L J, Zhou Y S, Xiong W, Gao Y, Huang X, Jiang L, Baldacchini T, Silvain J F and Lu Y F 2014 Two-photon polymerization: investigation of chemical and mechanical properties of resins using Raman microspectroscopy Opt. Lett. 39 3034–7

[35]

Wang H, Wang H T, Zhang W and Yang J K W 2020 Toward near-perfect diffractive optical elements via nanoscale 3D printing ACS Nano 14 10452–61

[36]

Ladner I S, Cullinan M A and Saha S K 2019 Tensile properties of polymer nanowires fabricated via two-photon lithography RSC Adv. 9 28808–13

[37]

Diamantopoulou M, Karathanasopoulos N and Mohr D 2021 Stress-strain response of polymers made through two-photon lithography: micro-scale experiments and neural network modeling Addit. Manuf. 47 102266

[38]

Dottermusch S, Busko D, Langenhorst M, Paetzold U W and Richards B S 2019 Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers Opt. Lett. 44 29–32

[39]

Jang B, Gargiulo J, Ando R F, Lauri A, Maier S A and Schmidt M A 2019 Light guidance in photonic band gap guiding dual-ring light cages implemented by direct laser writing Opt. Lett. 44 4016–9

[40]

Žukauskas A, Matulaitienė I, Paipulas D, Niaura G, Malinauskas M and Gadonas R 2015 Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics Laser Photon. Rev. 9 706–12

[41]

Mettry M et al 2021 Refractive index matched polymeric and preceramic resins for height-scalable two-photon lithography RSC Adv. 11 22633–9

[42]

Ovsianikov A et al 2008 Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication ACS Nano 2 2257–62

[43]

Desponds A et al 2021 3D printing and pyrolysis of optical ZrO2 nanostructures by two-photon lithography: reduced shrinkage and crystallization mediated by nanoparticles seeds Small 17 2102486

[44]

Purtov J, Verch A, Rogin P and Hensel R 2018 Improved development procedure to enhance the stability of microstructures created by two-photon polymerization Microelectron. Eng. 194 45–50

[45]

Vyatskikh A, Ng R C, Edwards B, Briggs R M and Greer J R 2020 Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals Nano Lett. 20 3513–20

[46]

Kotz F, Quick A S, Risch P, Martin T, Hoose T, Thiel M, Helmer D and Rapp B E 2021 Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures Adv. Mater. 33 2006341

[47]

Wen X W et al 2021 3D-printed silica with nanoscale resolution Nat. Mater. 20 1506–11

[48]

Vyatskikh A, Delalande S, Kudo A, Zhang X, Portela C M and Greer J R 2018 Additive manufacturing of 3D nano-architected metals Nat. Commun. 9 593

[49]

Schmid M D, Toulouse A, Thiele S, Mangold S, Herkommer A M and Giessen H 2023 3D direct laser writing of highly absorptive photoresist for miniature optical apertures Adv. Funct. Mater. 33 2211159

[50]

Toulouse A, Drozella J, Thiele S, Giessen H and Herkommer A 2021 3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint Light Adv. Manuf. 2 20–30

[51]

Ristok S, Flad P and Giessen H 2022 Atomic layer deposition of conformal anti-reflective coatings on complex 3D printed micro-optical systems Opt. Mater. Express 12 2063–71

[52]

Kawata S, Sun H B, Tanaka T and Takada K 2001 Finer features for functional microdevices Nature 412 697–8

[53]

Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere N A, Doraiswamy A and Narayan R J 2007 Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery Int. J. Appl. Ceram. Technol. 4 22–29

[54]

Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A and Kawata S 2006 Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization Opt. Express 14 800–9

[55]

Lim T W and Yang D Y 2015 Direct fabrication of nano-wrinkled 3D microstructures using fitfully accumulated two-photon polymerization Int. J. Precis. Eng. Manuf. 16 2427–31

[56]

Lee K S, Kim R H, Yang D Y and Park S H 2008 Advances in 3D nano/microfabrication using two-photon initiated polymerization Prog. Polym. Sci. 33 631–81

[57]

Fischer J and Wegener M 2013 Three-dimensional optical laser lithography beyond the diffraction limit Laser Photon. Rev. 7 22–44

[58]

Ha C W 2023 Overcoming delamination in two-photon lithography for improving fabrication of 3D microstructures Micro Nano Syst. Lett. 11 8

[59]

Lee J, Park S J, Han S C, Prabhakaran P and Ha C W 2023 Enhanced mechanical property through high-yield fabrication process with double laser scanning method in two-photon lithography Mater. Des. 235 112389

[60]

Rekštytė S M, Žukauskas A, Purlys V, Gordienko Y and Malinauskas M 2013 Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces Appl. Surf. Sci. 270 382–7

[61]

Rekštytė S, Jonavičius T and Malinauskas M 2014 Direct laser writing of microstructures on optically opaque and reflective surfaces Opt. Lasers Eng. 53 90–97

[62]

Žukauskas A, Malinauskas M, Kadys A, Gervinskas G, Seniutinas G, Kandasamy S and Juodkazis S 2013 Black silicon: substrate for laser 3D micro/nano-polymerization Opt. Express 21 6901–9

[63]

Thiele S, Gissibl T, Giessen H and Herkommer A M 2016 Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing Opt. Lett. 41 3029–32

[64]

Hinze U, El-Tamer A, Doskolovich L L, Bezus E A, Reiß S, Stolz H, Guthoff R F, Stachs O and Chichkov B 2016 Additive manufacturing of a trifocal diffractive-refractive lens Opt. Commun. 372 235–40

[65]

Brückner A, Leitel R, Oberdörster A, Dannberg P, Wippermann F C and Bräuer A 2011 Multi-aperture optics for wafer-level cameras J. Micro/Nanolithogr. MEMS MOEMS 10 043010

[66]

Thiele S, Arzenbacher K, Gissibl T, Giessen H and Herkommer A M 2017 3D-printed eagle eye: compound microlens system for foveated imaging Sci. Adv. 3 e1602655

[67]

Hu Z Y, Zhang Y L, Pan C, Dou J Y, Li Z Z, Tian Z N, Mao J W, Chen Q D and Sun H B 2022 Miniature optoelectronic compound eye camera Nat. Commun. 13 5634

[68]

Dong Y B, Pan G Z, Xun M, Su H, Chen L, Sun Y, Luan H T, Fang X Y, Wu D X and Gu M 2023 Nanoprinted diffractive layer integrated vertical-cavity surface-emitting vortex lasers with scalable topological charge Nano Lett. 23 9096–104

[69]

Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Two-photon direct laser writing of ultracompact multi-lens objectives Nat. Photon. 10 554–60

[70]

Gissibl T, Thiele S, Herkommer A and Giessen H 2016 Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres Nat. Commun. 7 11763

[71]

Plidschun M, Ren H R, Kim J, Förster R, Maier S A and Schmidt M A 2021 Ultrahigh numerical aperture meta-fibre for flexible optical trapping Light Sci. Appl. 10 57

[72]

Ren H R, Jang J, Li C H, Aigner A, Plidschun M, Kim J, Rho J, Schmidt M A and Maier S A 2022 An achromatic metafiber for focusing and imaging across the entire telecommunication range Nat. Commun. 13 4183

[73]

Constable A, Kim J, Mervis J, Zarinetchi F and Prentiss M 1993 Demonstration of a fiber-optical light-force trap Opt. Lett. 18 1867–9

[74]
Senior J M 1993 Optical Fiber Communications: Principles and Practice 2nd edn (Prentice Hall International (UK) Ltd.) p 922
[75]

Lee B 2003 Review of the present status of optical fiber sensors Opt. Fiber Technol. 9 57–79

[76]

Nair S P, Trisno J, Wang H T and Yang J K W 2021 3D printed fiber sockets for plug and play micro-optics Int. J. Extrem. Manuf. 3 015301

[77]

Bürger J, Schalles V, Kim J, Jang B, Zeisberger M, Gargiulo J, Menezes L D S, Schmidt M A and Maier S A 2022 3D-nanoprinted antiresonant hollow-core microgap waveguide: an on-chip platform for integrated photonic devices and sensors ACS Photonics 9 3012–24

[78]

Asadollahbaik A, Thiele S, Weber K, Kumar A, Drozella J, Sterl F, Herkommer A M, Giessen H and Fick J 2020 Highly efficient dual-fiber optical trapping with 3D printed diffractive Fresnel lenses ACS Photonics 7 88–97

[79]

Sollapur R et al 2017 Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers Light Sci. Appl. 6 e17124

[80]

Leite I T, Turtaev S, Jiang X, Šiler M, Cuschieri A, Russell P S J and Čižmár T 2018 Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre Nat. Photon. 12 33–39

[81]

Pisco M and Cusano A 2020 Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms Sensors 20 4705

[82]

Liberale C, Cojoc G, Candeloro P, Das G, Gentile F, De Angelis F and Di Fabrizio E 2010 Micro-optics fabrication on top of optical fibers using two-photon lithography IEEE Photonics Technol. Lett. 22 474–6

[83]

Presby H M, Benner A F and Edwards C A 1990 Laser micromachining of efficient fiber microlenses Appl. Opt. 29 2692–5

[84]

Cabrini S, Liberale C, Cojoc D, Carpentiero A, Prasciolu M, Mora S, Degiorgio V, De Angelis F and Di Fabrizio E 2006 Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling Microelectron. Eng. 83 804–7

[85]

Ren H R, Fang X Y, Jang J, Bürger J, Rho J and Maier S A 2020 Complex-amplitude metasurface-based orbital angular momentum holography in momentum space Nat. Nanotechnol. 15 948–55

[86]

Solmaz M E, Biswas R, Sankhagowit S, Thompson J R, Mejia C A, Malmstadt N and Povinelli M L 2012 Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap Biomed. Opt. Express 3 2419–27

[87]

Plidschun M, Weidlich S, Šiler M, Weber K, Čižmár T and Schmidt M A 2019 Nanobore fiber focus trap with enhanced tuning capabilities Opt. Express 27 36221–30

[88]

Liao C R, Yang K M, Wang J, Bai Z Y, Gan Z S and Wang Y P 2019 Helical microfiber Bragg grating printed by femtosecond laser for refractive index sensing IEEE Photonics Technol. Lett. 31 971–4

[89]

Li C, Liao C R, Wang J, Gan Z S and Wang Y P 2018 Femtosecond laser microprinting of a polymer optical fiber interferometer for high-sensitivity temperature measurement Polymers 10 1192

[90]

Thompson A J, Power M and Yang G Z 2018 Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning Opt. Express 26 14186–200

[91]

Li M, Liu Y, Zhao X L, Gao R X, Li Y and Qu S L 2017 High sensitivity fiber acoustic sensor tip working at 1550 nm fabricated by two-photon polymerization technique Sens. Actuators A 260 29–34

[92]

Wang B K, Zhang Q M and Gu M 2020 Aspherical microlenses enabled by two-photon direct laser writing for fiber-optical microendoscopy Opt. Mater. Express 10 3174–84

[93]

Zhu H D, Li M L, Hu T, Zhao M and Yang Z Y 2023 Three-dimensional printing of a beam expander to enable the combination of hundred-micron optical elements and a single-mode fiber Opt. Lett. 48 5379–82

[94]

Malinauskas M, Gilbergs H, Žukauskas A, Purlys V, Paipulas D and Gadonas R 2010 A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses J. Opt. 12 035204

[95]

Wu D, Chen Q D, Niu L G, Jiao J, Xia H, Song J F and Sun H B 2009 100% Fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision IEEE Photonics Technol. Lett. 21 1535–7

[96]

Lin X F, Chen Q D, Niu L G, Jiang T, Wang W Q and Sun H B 2010 Mask-free production of integratable monolithic micro logarithmic axicon lenses J. Lightwave Technol. 28 1256–60

[97]

Li J W et al 2018 Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes Sci. Rep. 8 14789

[98]

Takada K, Sun H B and Kawata S 2005 Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting Appl. Phys. Lett. 86 071122

[99]

Guo R, Xiao S Z, Zhai X M, Li J W, Xia A D and Huang W H 2006 Micro lens fabrication by means of femtosecond two photon photopolymerization Opt. Express 14 810–6

[100]

Kirchner R, Chidambaram N, Altana M and Schift H 2017 How post-processing by selective thermal reflow can reduce the roughness of 3D lithography in micro-optical lenses Proc. SPIE 10095 1009507

[101]

Dehaeck S, Scheid B and Lambert P 2018 Adaptive stitching for meso-scale printing with two-photon lithography Addit. Manuf. 21 589–97

[102]

Jonušauskas L, Gailevičius D, Rekštytė S, Baldacchini T, Juodkazis S and Malinauskas M 2019 Mesoscale laser 3D printing Opt. Express 27 15205–21

[103]

Ristok S, Thiele S, Toulouse A, Herkommer A M and Giessen H 2020 Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components Opt. Mater. Express 10 2370–8

[104]

Schmid M, Thiele S, Herkommer A and Giessen H 2018 Three-dimensional direct laser written achromatic axicons and multi-component microlenses Opt. Lett. 43 5837–40

[105]

Schmid M, Thiele S, Herkommer A and Giessen H 2023 Adjustment-free two-sided 3D direct laser writing for aligned micro-optics on both substrate sides Opt. Lett. 48 131–4

[106]

Aslani V, Toulouse A, Schmid M, Giessen H, Haist T and Herkommer A 2023 3D printing of colored micro-optics Opt. Mater. Express 13 1372–84

[107]

Sanli U T, Rodgers G, Zdora M C, Qi P, Garrevoet J, Falch K V, Müller B, David C and Vila-Comamala J 2023 Apochromatic x-ray focusing Light Sci. Appl. 12 107

[108]

Siegle L, Ristok S and Giessen H 2023 Complex aspherical singlet and doublet microoptics by grayscale 3D printing Opt. Express 31 4179–89

[109]

Balli F, Sultan M A and Hastings J T 2021 Rotationally tunable varifocal 3D metalens Opt. Lett. 46 3548–51

[110]

Kumar V, Shrivastava R L and Untawale S P 2015 Fresnel lens: a promising alternative of reflectors in concentrated solar power Renew. Sustain. Energy Rev. 44 376–90

[111]

Leutz R, Suzuki A, Akisawa A and Kashiwagi T 1999 Design of a nonimaging Fresnel lens for solar concentrators Sol. Energy 65 379–87

[112]

Tripanagnostopoulos Y, Siabekou C and Tonui J K 2007 The Fresnel lens concept for solar control of buildings Sol. Energy 81 661–75

[113]

He M F, Shen X M, Liu X, Kuang C F and Liu X 2023 3D nanoprinting for fiber-integrated achromatic diffractive lens Opt. Lett. 48 5221–4

[114]

Furlan W D, Saavedra G and Monsoriu J A 2007 White-light imaging with fractal zone plates Opt. Lett. 32 2109–11

[115]

Wu D, Niu L G, Chen Q D, Wang R and Sun H B 2008 High efficiency multilevel phase-type fractal zone plates Opt. Lett. 33 2913–5

[116]

Liu H L et al 2022 High-order photonic cavity modes enabled 3D structural colors ACS Nano 16 8244–52

[117]

Hao C L, Gao S C, Ruan Q F, Feng Y H, Li Y, Yang J K W, Li Z H and Qiu C W 2020 Single-layer aberration-compensated flat lens for robust wide-angle imaging Laser Photon. Rev. 14 2000017

[118]

Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S and Faraon A 2016 Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations Nat. Commun. 7 13682

[119]

Groever B, Chen W T and Capasso F 2017 Meta-lens doublet in the visible region Nano Lett. 17 4902–7

[120]

Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging Science 352 1190–4

[121]

She A L, Zhang S Y, Shian S, Clarke D R and Capasso F 2018 Large area metalenses: design, characterization, and mass manufacturing Opt. Express 26 1573–85

[122]

Meem M, Banerji S, Pies C, Oberbiermann T, Majumder A, Sensale-Rodriguez B and Menon R 2020 Large-area, high-numerical-aperture multi-level diffractive lens via inverse design Optica 7 252–3

[123]

Wang P, Mohammad N and Menon R 2016 Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing Sci. Rep. 6 21545

[124]

Kim G, Domínguez-Caballero J A and Menon R 2012 Design and analysis of multi-wavelength diffractive optics Opt. Express 20 2814–23

[125]

Mohammad N, Meem M, Shen B, Wang P and Menon R 2018 Broadband imaging with one planar diffractive lens Sci. Rep. 8 2799

[126]

Meem M, Banerji S, Majumder A, Vasquez F G, Sensale-Rodriguez B and Menon R 2019 Broadband lightweight flat lenses for long-wave infrared imaging Proc. Natl Acad. Sci. USA 116 21375–8

[127]

Presutti F and Monticone F 2020 Focusing on bandwidth: achromatic metalens limits Optica 7 624–31

[128]

Engelberg J and Levy U 2022 Standardizing flat lens characterization Nat. Photon. 16 171–3

[129]

Engelberg J and Levy U 2022 Generalized metric for broadband flat lens performance comparison Nanophotonics 11 3559–74

[130]

Wang H T, Hao C L, Lin H, Wang Y T, Lan T, Qiu C W and Jia B H 2021 Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses Opto-Electron. Adv. 4 200031

[131]

Plidschun M, Zeisberger M, Kim J, Wieduwilt T and Schmidt M A 2022 Fiber-based 3D nano-printed holography with individually phase-engineered remote points Sci. Rep. 12 20920

[132]

Thiele S, Pruss C, Herkommer A M and Giessen H 2019 3D printed stacked diffractive microlenses Opt. Express 27 35621–30

[133]

Schmid M, Sterl F, Thiele S, Herkommer A and Giessen H 2021 3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range Opt. Lett. 46 2485–8

[134]

Richards C A, Ocier C R, Xie D J, Gao H B, Robertson T, Goddard L L, Christiansen R E, Cahill D G and Braun P V 2023 Hybrid achromatic microlenses with high numerical apertures and focusing efficiencies across the visible Nat. Commun. 14 3119

[135]

Li C et al 2023 Arbitrarily structured quantum emission with a multifunctional metalens eLight 3 19

[136]

Wang Z H, Wu Y L, Qi D F, Yu W H and Zheng H Y 2024 Two-photon polymerization for fabrication of metalenses for diffraction-limited focusing and high-resolution imaging Opt. Laser Technol. 169 110128

[137]

Hadibrata W, Wei H M, Krishnaswamy S and Aydin K 2021 Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography Nano Lett. 21 2422–8

[138]

Roques-Carmes C, Lin Z, Christiansen R E, Salamin Y, Kooi S E, Joannopoulos J D, Johnson S G and Soljačić M 2022 Toward 3D-printed inverse-designed metaoptics ACS Photonics 9 43–51

[139]

Duan H, Wang M H, Hu X, Li Z Y, Jiang M L, Wang S C, Cao Y Y, Li X P and Qin F 2023 Aberration-compensated supercritical lens for sub-diffractive focusing within 20° field of view Opt. Lett. 48 2523–6

[140]

Christiansen R E, Lin Z N, Roques-Carmes C, Salamin Y, Kooi S E, Joannopoulos J D, Soljačić M and Johnson S G 2020 Fullwave maxwell inverse design of axisymmetric, tunable, and multi-scale multi-wavelength metalenses Opt. Express 28 33854–68

[141]

Balli F, Sultan M, Lami S K and Hastings J T 2020 A hybrid achromatic metalens Nat. Commun. 11 3892

[142]

Balli F, Sultan M A, Ozdemir A and Hastings J T 2021 An ultrabroadband 3D achromatic metalens Nanophotonics 10 1259–64

[143]

Moore D T 1980 Gradient-index optics: a review Appl. Opt. 19 1035–8

[144]

Pickering M A, Taylor R L and Moore D T 1986 Gradient infrared optical material prepared by a chemical vapor deposition process Appl. Opt. 25 3364–72

[145]

Sinai P 1971 Correction of optical aberrations by neutron irradiation Appl. Opt. 10 99–104

[146]
Moore R 1973 Plastic optical element having refractive index gradient U.S. Patent No. 3718383
[147]
Hensler J R 1975 Method of producing a refractive index gradient in glass U.S. Patent. No. 3873408
[148]

Ye C F and McLeod R R 2008 GRIN lens and lens array fabrication with diffusion-driven photopolymer Opt. Lett. 33 2575–7

[149]

Ocier C R et al 2020 Direct laser writing of volumetric gradient index lenses and waveguides Light Sci. Appl. 9 196

[150]

Porte X, Dinc N U, Moughames J, Panusa G, Juliano C, Kadic M, Moser C, Brunner D and Psaltis D 2021 Direct (3+1)D laser writing of graded-index optical elements Optica 8 1281–7

[151]

Littlefield A J et al 2023 Enabling high precision gradient index control in subsurface multiphoton lithography ACS Photonics 10 3008–19

[152]

Chung T T, Tu Y T, Hsueh Y H, Chen S Y and Li W J 2013 Micro-lens array fabrication by two photon polymerization technology Int. J. Autom. Smart Technol. 3 131–5

[153]

Aderneuer T, Fernández O and Ferrini R 2021 Two-photon grayscale lithography for free-form micro-optical arrays Opt. Express 29 39511–20

[154]

Yan L Y, Yang D, Gong Q H and Li Y 2020 Rapid fabrication of continuous surface Fresnel microlens array by femtosecond laser focal field engineering Micromachines 11 112

[155]

Liu Z H, Hu G W, Ye H P, Wei M Y, Guo Z H, Chen K X, Liu C, Tang B and Zhou G F 2023 Mold-free self-assembled scalable microlens arrays with ultrasmooth surface and record-high resolution Light Sci. Appl. 12 143

[156]

Niu L G, Wang D, Jiang T, Wu S Z, Li A W and Song J F 2011 High fill-factor multilevel Fresnel zone plate arrays by femtosecond laser direct writing Opt. Commun. 284 777–81

[157]

Huang Y, Qin Y L, Tu P, Zhang Q, Zhao M and Yang Z Y 2020 High fill factor microlens array fabrication using direct laser writing and its application in wavefront detection Opt. Lett. 45 4460–3

[158]

Yang L, El-Tamer A, Hinze U, Li J W, Hu Y L, Huang W H, Chu J R and Chichkov B N 2015 Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator Opt. Lasers Eng. 70 26–32

[159]

Hu Y L, Chen Y H, Ma J Q, Li J W, Huang W H and Chu J R 2013 High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization Appl. Phys. Lett. 103 141112

[160]

He Z Q, Lee Y H, Chanda D and Wu S T 2018 Adaptive liquid crystal microlens array enabled by two-photon polymerization Opt. Express 26 21184–93

[161]

Tian Z N, Yao W G, Xu J J, Yu Y H, Chen Q D and Sun H B 2015 Focal varying microlens array Opt. Lett. 40 4222–5

[162]

Wang H T, Wang H, Ruan Q F, Tan Y S, Qiu C W and Yang J K W 2021 Optical fireworks based on multifocal three-dimensional color prints ACS Nano 15 10185–93

[163]

Chan J Y E, Ruan Q F, Jiang M H, Wang H T, Wang H, Zhang W, Qiu C W and Yang J K W 2021 High-resolution light field prints by nanoscale 3D printing Nat. Commun. 12 3728

[164]

Lin J Q, Kan Y D, Jing X and Lu M M 2018 Design and fabrication of a three-dimensional artificial compound eye using two-photon polymerization Micromachines 9 336

[165]

Dai B et al 2021 Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing Nat. Commun. 12 6458

[166]

Ma Z C, Hu X Y, Zhang Y L, Liu X Q, Hou Z S, Niu L G, Zhu L, Han B, Chen Q D and Sun H B 2019 Smart compound eyes enable tunable imaging Adv. Funct. Mater. 29 1903340

[167]

Schäffner D, Preuschoff T, Ristok S, Brozio L, Schlosser M, Giessen H and Birkl G 2020 Arrays of individually controllable optical tweezers based on 3D-printed microlens arrays Opt. Express 28 8640–5

[168]

Wang L, Gong W, Cao X W, Yu Y H, Juodkazis S and Chen Q D 2023 Holographic laser fabrication of 3D artificial compound μ-eyes Light Adv. Manuf. 4 339–47

[169]

Marini M et al 2023 Microlenses fabricated by two-photon laser polymerization for cell imaging with non-linear excitation microscopy Adv. Funct. Mater. 33 2213926

[170]

Bogucki A et al 2020 Ultra-long-working-distance spectroscopy of single nanostructures with aspherical solid immersion microlenses Light Sci. Appl. 9 48

[171]

Dietrich P I, Harris R J, Blaicher M, Corrigan M K, Morris T J, Freude W, Quirrenbach A and Koos C 2017 Printed freeform lens arrays on multi-core fibers for highly efficient coupling in astrophotonic systems Opt. Express 25 18288–95

[172]

Stellmacher A, Liu Y, Soldera M, Rank A, Reineke S and Lasagni A F 2019 Fast and cost effective fabrication of microlens arrays for enhancing light out-coupling of organic light-emitting diodes Mater. Lett. 252 268–71

[173]

Chang C Y and Tsai M H 2015 Development of a continuous roll-to-roll processing system for mass production of plastic optical film J. Micromech. Microeng. 25 125014

[174]

Liu C, Zheng Y, Yuan R Y, Jiang Z, Xu J B, Zhao Y R, Wang X, Li X W, Xing Y and Wang Q H 2023 Tunable liquid lenses: emerging technologies and future perspectives Laser Photon. Rev. 17 2300274

[175]

Lee Y H, Franklin D, Gou F W, Liu G G, Peng F L, Chanda D and Wu S T 2017 Two-photon polymerization enabled multi-layer liquid crystal phase modulator Sci. Rep. 7 16260

[176]

Werdehausen D, Burger S, Staude I, Pertsch T and Decker M 2019 Dispersion-engineered nanocomposites enable achromatic diffractive optical elements Optica 6 1031–8

[177]

Hu Z Y, Jiang T, Tian Z N, Niu L G, Mao J W, Chen Q D and Sun H B 2022 Broad-bandwidth micro-diffractive optical elements Laser Photon. Rev. 16 2100537

[178]

Li J W et al 2020 Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use Light Sci. Appl. 9 124

[179]

Pahlevaninezhad H et al 2018 Nano-optic endoscope for high-resolution optical coherence tomography in vivo Nat. Photon. 12 540–7

[180]

Fröch J E, Huang L C, Tanguy Q A A, Colburn S, Zhan A L, Ravagli A, Seibel E J, Böhringer K F and Majumdar A 2023 Real time full-color imaging in a meta-optical fiber endoscope eLight 3 13

[181]
Figdor P P and Brandt T 2010 The Development of Endoscopy in the 19th Century: Including a Documentation on the Return of Bozzini’s Original Light Conductor from the USA to Vienna 2nd edn (Endo Press) p 129
[182]

Kim J, Kim S, Song J W, Kim H J, Lee M W, Han J, Kim J W and Yoo H 2020 Flexible endoscopic micro-optical coherence tomography for three-dimensional imaging of the arterial microstructure Sci. Rep. 10 9248

[183]

Li J W et al 2022 3D-printed micro lens-in-lens for in vivo multimodal microendoscopy Small 18 2107032

[184]

Bouma B E, Villiger M, Otsuka K and Oh W Y 2017 Intravascular optical coherence tomography [Invited] Biomed. Opt. Express 8 2660–86

[185]

Gora M J, Suter M J, Tearney G J and Li X D 2017 Endoscopic optical coherence tomography: technologies and clinical applications [Invited] Biomed. Opt. Express 8 2405–44

[186]

Yuan W, Brown R, Mitzner W, Yarmus L and Li X D 2017 Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm Nat. Commun. 8 1531

[187]

Scolaro L, Lorenser D, McLaughlin R A, Quirk B C, Kirk R W and Sampson D D 2012 High-sensitivity anastigmatic imaging needle for optical coherence tomography Opt. Lett. 37 5247–9

[188]

Li C H, Wieduwilt T, Wendisch F J, Márquez A, Menezes L D S, Maier S A, Schmidt M A and Ren H R 2023 Metafiber transforming arbitrarily structured light Nat. Commun. 14 7222

[189]

Mcculloch W S and Pitts W 1943 A logical calculus of the ideas immanent in nervous activity Bull. Math. Biol. 5 115–33

[190]

Schmidhuber J 2015 Deep learning in neural networks: an overview Neural Netw. 61 85–117

[191]

Hopfield J J 1982 Neural networks and physical systems with emergent collective computational abilities Proc. Natl Acad. Sci. USA 79 2554–8

[192]

Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M and Ozcan A 2018 All-optical machine learning using diffractive deep neural networks Science 361 1004–8

[193]

Luo Y, Zhao Y F, Li J X, Çetintaş E, Rivenson Y, Jarrahi M and Ozcan A 2022 Computational imaging without a computer: seeing through random diffusers at the speed of light eLight 2 4

[194]

Fu T Z, Zang Y B, Huang Y Y, Du Z M, Huang H H, Hu C Y, Chen M H, Yang S G and Chen H W 2023 Photonic machine learning with on-chip diffractive optics Nat. Commun. 14 70

[195]

Zhou T K, Lin X, Wu J M, Chen Y T, Xie H, Li Y P, Fan J T, Wu H Q, Fang L and Dai Q H 2021 Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit Nat. Photon. 15 367–73

[196]

Goodman J W, Dias A R and Woody L M 1978 Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms Opt. Lett. 2 1–3

[197]

Yan T, Wu J M, Zhou T K, Xie H, Xu F, Fan J T, Fang L, Lin X and Dai Q H 2019 Fourier-space diffractive deep neural network Phys. Rev. Lett. 123 023901

[198]

Wang T Y, Ma S Y, Wright L G, Onodera T, Richard B C and McMahon P L 2022 An optical neural network using less than 1 photon per multiplication Nat. Commun. 13 123

[199]

Goi E, Schoenhardt S and Gu M 2022 Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks Nat. Commun. 13 7531

[200]

Lee D, So S, Hu G W, Kim M, Badloe T, Cho H, Kim J, Kim H, Qiu C W and Rho J 2022 Hyperbolic metamaterials: fusing artificial structures to natural 2D materials eLight 2 1

[201]

Li Y H, Luo Y, Mengu D, Bai B J and Ozcan A 2023 Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Light Adv. Manuf. 4 206–21

[202]

Li Z Y, Su H, Li B L, Luan H T, Gu M and Fang X Y 2024 Event-based diffractive neural network chip for dynamic action recognition Opt. Laser Technol. 169 110136

[203]

Li J X, Hung Y C, Kulce O, Mengu D and Ozcan A 2022 Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network Light Sci. Appl. 11 153

[204]

Kulce O, Mengu D, Rivenson Y and Ozcan A 2021 All-optical information-processing capacity of diffractive surfaces Light Sci. Appl. 10 25

[205]

Wu T W, Menarini M, Gao Z H and Feng L 2023 Lithography-free reconfigurable integrated photonic processor Nat. Photon. 17 710–6

[206]

Teo T Y, Ma X X, Pastor E, Wang H, George J K, Yang J K W, Wall S, Miscuglio M, Simpson R E and Sorger V J 2022 Programmable chalcogenide-based all-optical deep neural networks Nanophotonics 11 4073–88

[207]

Bai B J, Luo Y, Gan T Y, Hu J T, Li Y H, Zhao Y F, Mengu D, Jarrahi M and Ozcan A 2022 To image, or not to image: class-specific diffractive cameras with all-optical erasure of undesired objects eLight 2 14

[208]
Taege Y, Schulz S L, Messerschmidt B, Eggeling C and Ataman Ç 2022 A miniaturized illumination unit for Airy light-sheet microscopy using 3D-printed freeform optics Imaging and Applied Optics Congress 2022 (3D, AOA, COSI, ISA, pcAOP) (Optica Publishing Group) p IW3C.1
[209]

Coelho S, Baek J, Walsh J, Justin Gooding J and Gaus K 2022 Direct-laser writing for subnanometer focusing and single-molecule imaging Nat. Commun. 13 647

[210]

Wang C Q and Wang C 2022 Chirality-reversed bidirectional high-efficiency dichroic metalens based on hybrid helical surfaces Laser Photon. Rev. 16 2200346

[211]

Hong Z H, Sun Y Y, Ye P R, Loy D A and Liang R G 2023 Bio-inspired compact, high-resolution snapshot hyperspectral imaging system with 3D printed glass lightguide array Adv. Opt. Mater. 11 2300156

[212]

Roberts G, Ballew C, Zheng T Z, Garcia J C, Camayd-Muñoz S, Hon P W C and Faraon A 2023 3D-patterned inverse-designed mid-infrared metaoptics Nat. Commun. 14 2768

[213]

Dresselhaus J L, Fleckenstein H, Domaracký M, Prasciolu M, Ivanov N, Carnis J, Murray K T, Morgan A J, Chapman H N and Bajt S 2022 Precise wavefront characterization of x-ray optical elements using a laboratory source Rev. Sci. Instrum. 93 073704

[214]

Sanli U T, Ceylan H, Bykova I, Weigand M, Sitti M, Schütz G and Keskinbora K 2018 3D nanoprinted plastic kinoform x-ray optics Adv. Mater. 30 1802503

[215]

Kubec A, Zdora M C, Sanli U T, Diaz A, Vila-Comamala J and David C 2022 An achromatic x-ray lens Nat. Commun. 13 1305

[216]
Galvanauskas K, Astrauskytė D, Balčas G, Gailevičius D, Grinevičiūtė L and Malinauskas M 2023 High-transparency 3D micro-optics of hybrid-polymer SZ2080™ made via ultrafast laser nanolithography and atomic layer deposition bioRxiv Preprint https://doi.org/10.1364/opticaopen.22302655.v1 (posted online 20 March 2023, accessed 8 August 2023)
[217]

Žukauskas A, Batavičiūtė G, Ščiuka M, Balevičius Z, Melninkaitis A and Malinauskas M 2015 Effect of the photoinitiator presence and exposure conditions on laser-induced damage threshold of ORMOSIL (SZ2080) Opt. Mater. 39 224–31

[218]

Bauer J, Crook C and Baldacchini T 2023 A sinterless, low-temperature route to 3D print nanoscale optical-grade glass Science 380 960–6

[219]

Li M Z, Yue L, Rajan A C, Yu L X, Sahu H, Montgomery S M, Ramprasad R and Qi H J 2023 Low-temperature 3D printing of transparent silica glass microstructures Sci. Adv. 9 eadi2958

[220]

Tang J, Xu X Y, Shen X M, Kuang C F, Chen H Z, Shi M M and Huang N 2023 Ketocoumarin-based photoinitiators for high-sensitivity two-photon lithography ACS Appl. Polym. Mater. 5 2956–63

[221]

Balčas G, Malinauskas M, Farsari M and Juodkazis S 2023 Fabrication of glass-ceramic 3D micro-optics by combining laser lithography and calcination Adv. Funct. Mater. 33 2215230

[222]

Hahn V, Messer T, Bojanowski N M, Curticean E R, Wacker I, Schröder R R, Blasco E and Wegener M 2021 Two-step absorption instead of two-photon absorption in 3D nanoprinting Nat. Photon. 15 932–8

[223]

Bojanowski N M, Vranic A, Hahn V, Rietz P, Messer T, Brückel J, Barner-kowollik C, Blasco E, Bräse S and Wegener M 2023 Search for alternative two-step-absorption photoinitiators for 3D laser nanoprinting Adv. Funct. Mater. 33 2212482

[224]

Hahn V, Rietz P, Hermann F, Müller P, Barner-Kowollik C, Schlöder T, Wenzel W, Blasco E and Wegener M 2022 Light-sheet 3D microprinting via two-colour two-step absorption Nat. Photon. 16 784–91

[225]

Sun K et al 2022 Three-dimensional direct lithography of stable perovskite nanocrystals in glass Science 375 307–10

[226]

Li F et al 2023 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals Science 381 1468–74

[227]

Han F, Gu S Y, Klimas A, Zhao N, Zhao Y X and Chen S C 2022 Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly Science 378 1325–31

[228]

Long L, Deng Q R, Huang R T, Li J F and Li Z Y 2023 3D printing of plasmonic nanofocusing tip enabling high resolution, high throughput and high contrast optical near-field imaging Light Sci. Appl. 12 219

[229]

Im J et al 2023 Strategies for integrating metal nanoparticles with two-photon polymerization process: toward high resolution functional additive manufacturing Adv. Funct. Mater. 33 2211920

[230]

Kilic N I, Saladino G M, Johansson S, Shen R, McDorman C, Toprak M S and Johansson S 2023 Two-photon polymerization printing with high metal nanoparticle loading ACS Appl. Mater. Interfaces 15 49794–804

[231]

Winczewski J P, Dávila J A, Herrera-Zaldívar M, Ruiz-Zepeda F, Córdova-Castro R M, de la Vega C R P, Cabriel C, Izeddin I, Gardeniers H and Susarrey-Arce A 2023 3D-architected alkaline-earth perovskites Adv. Mater. 36 2307077

[232]

Jian B C, Li H G, He X N, Wang R, Yang H Y and Ge Q 2024 Two-photon polymerization-based 4D printing and its applications Int. J. Extrem. Manuf. 6 012001

[233]

Lyu Z Y, Wang J L and Chen Y F 2023 4D printing: interdisciplinary integration of smart materials, structural design, and new functionality Int. J. Extrem. Manuf. 5 032011

[234]

Tariq A, Arif Z U, Khalid M Y, Hossain M, Rasool P I, Umer R and Ramakrishna S 2023 Recent advances in the additive manufacturing of stimuli-responsive soft polymers Adv. Eng. Mater. 25 2301074

[235]

Zhang W et al 2021 Structural multi-colour invisible inks with submicron 4D printing of shape memory polymers Nat. Commun. 12 112

[236]

Sun Y L, Dong W F, Yang R Z, Meng X, Zhang L, Chen Q D and Sun H B 2012 Dynamically tunable protein microlenses Angew. Chem., Int. Ed. 51 1558–62

[237]

Sun Y L, Hou Z S, Sun S M, Zheng B Y, Ku J F, Dong W F, Chen Q D and Sun H B 2015 Protein-based three-dimensional whispering-gallery-mode micro-lasers with stimulus-responsiveness Sci. Rep. 5 12852

[238]

Zhou X Q, Hou Y H and Lin J Q 2015 A review on the processing accuracy of two-photon polymerization AIP Adv. 5 030701

[239]

Gonzalez-Hernandez D, Sanchez-Padilla B, Gailevičius D, Thodika S C, Juodkazis S, Brasselet E and Malinauskas M 2023 Single-step 3D printing of micro-optics with adjustable refractive index by ultrafast laser nanolithography Adv. Opt. Mater. 11 2300258

[240]

Shao G B, Hai R H and Sun C 2020 3D printing customized optical lens in minutes Adv. Opt. Mater. 8 1901646

[241]

He Y P, Shao Q, Chen S C and Zhou R J 2022 Characterization of two-photon photopolymerization fabrication using high-speed optical diffraction tomography Addit. Manuf. 60 103293

[242]

Zvagelsky R, Mayer F, Beutel D, Rockstuhl C, Gomard G and Wegener M 2022 Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography Light Adv. Manuf. 3 466–80

[243]

Wdowiak E, Ziemczonok M, Martinez-Carranza J and Kuś A 2023 Phase-assisted multi-material two-photon polymerization for extended refractive index range Addit. Manuf. 73 103666

[244]

Gan Z S, Cao Y Y, Evans R A and Gu M 2013 Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size Nat. Commun. 4 2061

[245]

Liu T Q et al 2024 Ultrahigh-printing-speed photoresists for additive manufacturing Nat. Nanotechnol. 19 51–57

[246]

Cao C et al 2023 High-precision and rapid direct laser writing using a liquid two-photon polymerization initiator ACS Appl. Mater. Interfaces 15 30870–9

[247]

Yang S H, Ding C L, Zhu D Z, Yang Z Y, Liu Y, Kuang C F and Liu X 2023 High-speed two-photon lithography based on femtosecond laser Opto-Electron. Eng. 50 220133

[248]

Wang Z C et al 2022 Single-layer spatial analog meta-processor for imaging processing Nat. Commun. 13 2188

[249]

Saha S K, Wang D E, Nguyen V H, Chang Y N, Oakdale J S and Chen S C 2019 Scalable submicrometer additive manufacturing Science 366 105–9

[250]

Geng Q, Wang D E, Chen P F and Chen S C 2019 Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization Nat. Commun. 10 2179

[251]

Ouyang W Q, Xu X Y, Lu W P, Zhao N, Han F and Chen S C 2023 Ultrafast 3D nanofabrication via digital holography Nat. Commun. 14 1716

[252]

Balena A, Bianco M, Pisanello F and De Vittorio M 2023 Recent advances on high-speed and holographic two-photon direct laser writing Adv. Funct. Mater. 33 2211773

[253]

Tan J W, Wang G, Li Y F, Yu Y and Chen Q D 2023 Femtosecond laser fabrication of refractive/diffractive micro-optical components on hard brittle materials Laser Photon. Rev. 17 2200692

[254]

Xia C, Bustamante E, Kuebler S M, Martinez N P, Rumpf R C and Touma J E 2022 Binary-lens-embedded photonic crystals Opt. Lett. 47 2943–6

[255]

Maigyte L, Purlys V, Trull J, Peckus M, Cojocaru C, Gailevičius D, Malinauskas M and Staliunas K 2013 Flat lensing in the visible frWave aberrationency range by woodpile photonic crystals Opt. Lett. 38 2376–8

[256]

Wang X W et al 2023 Single-shot isotropic differential interference contrast microscopy Nat. Commun. 14 2063

[257]

Malinauskas M et al 2010 Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization J. Opt. 12 124010

[258]

Schell A W, Neumer T, Shi Q, Kaschke J, Fischer J, Wegener M and Benson O 2014 Laser-written parabolic micro-antennas for efficient photon collection Appl. Phys. Lett. 105 231117

[259]

Toulouse A, Drozella J, Motzfeld P, Fahrbach N, Aslani V, Thiele S, Giessen H and Herkommer A M 2022 Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design Opt. Express 30 707–20

[260]

Lohner S A, Brenner T, Glöckler F, Hevisov D and Kienle A 2022 Imaging of custom-made single scatterers with the confocal laser scanning microscope J. Opt. Soc. Am. A 39 1831–8

[261]

Bertoncini A, Laptenok S P, Genchi L, Rajamanickam V P and Liberale C 2021 3D-printed high-NA catadioptric thin lens for suppression of XPM background in stimulated Raman scattering microscopy J. Biophoton. 14 e202000219

[262]

Krauze W, Kuś A, Ziemczonok M, Haimowitz M, Chowdhury S and Kujawińska M 2022 3D scattering microphantom sample to assess quantitative accuracy in tomographic phase microscopy techniques Sci. Rep. 12 19586

[263]

Ziemczonok M, Kuś A, Wasylczyk P and Kujawińska M 2019 3D-printed biological cell phantom for testing 3D quantitative phase imaging systems Sci. Rep. 9 18872

[264]

Pisarenko A V, Zvagelsky R D, Kolymagin D A, Katanchiev B V, Vitukhnovsky A G and Chubich D A 2020 DLW-printed optical fiber micro-connector kit for effective light coupling in optical prototyping Optik 201 163350

[265]

Li B Z et al 2024 Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscope Fundam. Res. 4 123–30

[266]

Dix S, Gutsche J, Waller E, von Freymann G and Widera A 2022 Fiber-tip endoscope for optical and microwave control Rev. Sci. Instrum. 93 095104

[267]

Jin B Y et al 2022 Light-harvesting microconical arrays integrated with photodetector FPAs for enhancing infrared imaging devices Proc. SPIE 12004 120040X

[268]

Wang H T et al 2023 Coloured vortex beams with incoherent white light illumination Nat. Nanotechnol. 18 264–72

International Journal of Extreme Manufacturing
Article number: 042002
Cite this article:
Wang H, Pan C-F, Li C, et al. Two-photon polymerization lithography for imaging optics. International Journal of Extreme Manufacturing, 2024, 6(4): 042002. https://doi.org/10.1088/2631-7990/ad35fe

91

Views

7

Downloads

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 01 November 2023
Revised: 15 December 2023
Accepted: 19 March 2024
Published: 18 April 2024
© 2024 The Author(s).

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Return