PDF (3.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Topical Review | Open Access

Materials, processes, devices and applications of magnetoresistive random access memory

Meiyin Yang1,2,3Yan Cui1,2,3Jingsheng Chen4,5Jun Luo1,2,3()
Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing 100029, People’s Republic of China
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, People’s Republic of China
School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
Suzhou Research Institute, National University of Singapore, Suzhou, Jiangsu 215000, People’s Republic of China
Show Author Information

Abstract

Magnetoresistive random access memory (MRAM) is a promising non-volatile memory technology that can be utilized as an energy and space-efficient storage and computing solution, particularly in cache functions within circuits. Although MRAM has achieved mass production, its manufacturing process still remains challenging, resulting in only a few semiconductor companies dominating its production. In this review, we delve into the materials, processes, and devices used in MRAM, focusing on both the widely adopted spin transfer torque MRAM and the next-generation spin-orbit torque MRAM. We provide an overview of their operational mechanisms and manufacturing technologies. Furthermore, we outline the major hurdles faced in MRAM manufacturing and propose potential solutions in detail. Then, the applications of MRAM in artificial intelligent hardware are introduced. Finally, we present an outlook on the future development and applications of MRAM.

References

[1]

Kent A D and Worledge D C 2015 A new spin on magnetic memories Nat. Nanotechnol. 10 187–91

[2]

Khvalkovskiy A V et al 2013 Basic principles of STT-MRAM cell operation in memory arrays J. Phys. D: Appl. Phys. 46 074001

[3]

Makarov A, Windbacher T, Sverdlov V and Selberherr S 2016 CMOS-compatible spintronic devices: a review Semicond. Sci. Technol. 31 113006

[4]

Slonczewski J C 1996 Current-driven excitation of magnetic multilayers J. Magn. Magn. Mater. 159 L1–L7

[5]

Apalkov D, Dieny B and Slaughter J M 2016 Magnetoresistive random access memory Proc. IEEE 104 1796–830

[6]
Kaushik B K and Verma S 2016 Spin transfer torque based devices Circuits, and Memory (Artech House)
[7]

Zhao W S, Wang Z H, Peng S Z, Wang L Z, Chang L and Zhang Y G 2016 Recent progresses in spin transfer torque-based magnetoresistive random access memory (STT-MRAM) Sci. China- Phys. Mech. Astron. 46 107306

[8]

Slonczewski J C 2005 Currents, torques, and polarization factors in magnetic tunnel junctions Phys. Rev. B 71 024411

[9]

Koch R H, Katine J A and Sun J Z 2004 Time-resolved reversal of spin-transfer switching in a nanomagnet Phys. Rev. Lett. 92 088302

[10]

Li Z and Zhang S 2004 Thermally assisted magnetization reversal in the presence of a spin-transfer torque Phys. Rev. B 69 134416

[11]

Wang X B, Zheng Y K, Xi H W and Dimitrov D 2008 Thermal fluctuation effects on spin torque induced switching: mean and variations J. Appl. Phys. 103 034507

[12]

Yagami K, Tulapurkar A A, Fukushima A and Suzuki Y 2004 Low-current spin-transfer switching and its thermal durability in a low-saturation-magnetization nanomagnet Appl. Phys. Lett. 85 5634–6

[13]

Meng H, Wang J G and Wang J P 2006 Low critical current for spin transfer in magnetic tunnel junctions Appl. Phys. Lett. 88 082504

[14]

Djayaprawira D D, Tsunekawa K, Nagai M, Maehara H, Yamagata S, Watanabe N, Yuasa S, Suzuki Y and Ando K 2005 230% Room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions Appl. Phys. Lett. 86 092502

[15]

Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction Nat. Mater. 9 721–4

[16]

Huai Y M, Albert F, Nguyen P, Pakala M and Valet T 2004 Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions Appl. Phys. Lett. 84 3118–20

[17]

Diao Z T, Apalkov D, Pakala M, Ding Y F, Panchula A and Huai Y M 2005 Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlOx barriers Appl. Phys. Lett. 87 232502

[18]

Kubota H, Fukushima A, Ootani Y, Yuasa S, Ando K, Maehara H, Tsunekawa K, Djayaprawira D D, Watanabe N and Suzuki Y 2005 Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions Jpn. J. Appl. Phys. 44 L1237

[19]

Hayakawa J, Ikeda S, Lee Y M, Sasaki R, Meguro T, Matsukura F, Takahashi H and Ohno H 2005 Current-driven magnetization switching in CoFeB/MgO/CoFeB magnetic tunnel junctions Jpn. J. Appl. Phys. 44 L1267

[20]

Butler W H, Zhang X G, Schulthess T C and MacLaren J M 2001 Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches Phys. Rev. B 63 054416

[21]

Yuasa S, Hono K, Hu G H and Worledge D C 2018 Materials for spin-transfer-torque magnetoresistive random-access memory MRS Bull. 43 352–7

[22]

Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions Nat. Mater. 3 868–71

[23]
Luryi S, Xu J and Zaslavsky A 2013 Magnetic tunnel junctions with a composite free layer: a new concept for future universal memory Future Trends in Microelectronics: Frontiers and Innovations ed S Luryi, J Xu and A Zaslavsky (Wiley-IEEE Press) pp 93–101
[24]

Cao W, Gao J F, Yang M Y, Xu J, Cui Y and Luo J 2022 The heavy ions irradiation effects on advanced spin transfer torque materials J. Magn. Magn. Mater. 542 168579

[25]

Hao R Z, Wang L and Min T 2019 A novel STT-MRAM design with electric-field-assisted synthetic anti-ferromagnetic free layer IEEE Trans. Magn. 55 3400506

[26]

Miura S et al 2020 Scalability of quad interface p-MTJ for 1× nm nm STT-MRAM with 10-ns low power write operation, 10 years retention and endurance >1011 IEEE Trans. Electron. Devices 67 5368–73

[27]
Jinnai B, Igarashi J, Shinoda T, Watanabe K, Fukami S and Ohno H 2021 Fast switching down to 3.5 ns in sub-5-nm magnetic tunnel junctions achieved by engineering relaxation time 2021 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 1–4
[28]

Watanabe K, Jinnai B, Fukami S, Sato H and Ohno H 2018 Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions Nat. Commun. 9 663

[29]
Jinnai B, Igarashi J, Watanabe K, Funatsu T, Sato H, Fukami S and Ohno H 2020 High-performance shape-anisotropy magnetic tunnel junctions down to 2.3 nm 2020 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 24.6.1–4
[30]
Hu G et al 2022. Double spin-torque magnetic tunnel junction devices for last-level cache applications 2022 Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 10.2.1–4
[31]

Yang H X et al 2017 3D cross-point spin transfer torque magnetic random access memory SPIN 7 1740011

[32]
Hosomi M et al 2005 A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram IEEE Int. Electron Devices Meeting, 2005. IEDM Technical Digest (Washington, DC, USA) (IEEE) pp 459–63
[33]

Fong X, Kim Y, Venkatesan R, Choday S H, Raghunathan A and Roy K 2016 Spin-transfer torque memories: devices, circuits, and systems Proc. IEEE 104 1449–88

[34]
Augustine C, Raychowdhury A, Somasekhar D, Tschanz J, Roy K and De V K 2010 Numerical analysis of typical STT-MTJ stacks for 1T-1R memory arrays 2010 Int. Electron Devices Meeting (San Francisco, CA, USA) (IEEE) pp 22.7.1–4
[35]
Wang S D, Lee H, Grezes C, Khalili P, Wang K L and Gupta P 2016. MTJ variation monitor-assisted adaptive MRAM write 2016 53nd ACM/EDAC/IEEE Design Automation Conf. (DAC) (Austin, TX, USA) (IEEE) pp 1–6
[36]

Wang S D, Lee H, Grezes C, Amiri P K, Wang K L and Gupta P 2021 Adaptive MRAM write and read with MTJ variation monitor IEEE Trans. Emerg. Top. Comput. 9 402–13

[37]

Yang C G, Emre Y, Cao Y and Chakrabarti C 2012 Improving reliability of non-volatile memory technologies through circuit level techniques and error control coding EURASIP J. Adv. Signal Process. 2012 211

[38]
Ahari A, Ebrahimi M, Oboril F and Tahoori M 2015 Improving reliability, performance, and energy efficiency of STT-MRAM with dynamic write latency 2015 33rd IEEE Int. Conf. on Computer Design (ICCD) (New York, NY, USA) (IEEE) pp 109–16
[39]

Wan L, Wu T W, Smith N, Santos T, Mihajlovic G, Li J L, Patel K, Melendez N D, Terris B and Katine J A 2022 Fabrication and individual addressing of STT-MRAM bit array with 50 nm full pitch IEEE Trans. Magn. 58 1–6

[40]

Rizzo N D et al 2013 A fully functional 64 Mb DDR3 ST-MRAM built on 90 nm CMOS technology IEEE Trans. Magn. 49 4441–6

[41]
Slaughter J M et al. 2016 Technology for reliable spin-torque MRAM products 2016 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 21.5.1–4
[42]
Lee K et al 2019 1Gbit high density embedded STT-MRAM in 28nm FDSOI technology 2019 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 2.2.1–4
[43]
Song Y J et al 2016 Highly functional and reliable 8Mb STT-MRAM embedded in 28nm logic 2016 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 27.2.1–4
[44]
Edelstein D et al 2020 A 14 nm embedded STT-MRAM CMOS technology 2020 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 11.5.1–4
[45]
Ko S et al 2023 Highly reliable and manufacturable MRAM embedded in 14nm FinFET node 2023 IEEE Symp. on VLSI Technology and Circuits (VLSI Technology and Circuits) (Kyoto, Japan) (IEEE) pp 1–2
[46]

Shih Y C et al 2019 Logic process compatible 40-nm 16-Mb, embedded perpendicular-MRAM with hybrid-resistance reference, sub-μA sensing resolution, and 17.5-nS read access time IEEE J. Solid-State Circuits 54 1029–38

[47]
Chih Y D et al 2020 13.3 A 22nm 32Mb embedded STT-MRAM with 10ns read speed, 1M cycle write endurance, 10 years retention at 150 ℃ and high immunity to magnetic field interference 2020 IEEE International Solid-State Circuits Conference—(ISSCC) (San Francisco, CA, USA) (IEEE) pp 222–4
[48]
Shih Y C et al 2020 A reflow-capable, embedded 8Mb STT-MRAM macro with 9ns read access time in 16nm FinFET logic CMOS process 2020 IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 11.4.1–4
[49]
Lee T Y et al 2022 World-most energy-efficient MRAM technology for non-volatile RAM applications 2022 International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 10.7.1–4
[50]
Shimoi T et al 2022 A 22nm 32Mb embedded STT-MRAM macro achieving 5.9 ns random read access and 5.8 MB/s write throughput at up to Tj of 150 ℃ 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (Honolulu, HI, USA) (IEEE) pp 134–5
[51]
Wang Z et al 2023 Dual QSPI 8Gb STT-MRAM for space applications 2023 International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 1–4
[52]
Seo S M et al First demonstration of full integration and characterization of 4F2 1S1M cells with 45 nm of pitch and 20 nm of MTJ size 2022 International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 10.1.1–4
[53]
Ambrosi E et al 2023 Low voltage (<1.8 V) and high endurance (>1M) 1-Selector/1-STT-MRAM with ultra-low (1 ppb) read disturb for high density embedded memory arrays 2023 International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 1–4
[54]

Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection Nature 476 189–93

[55]

Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect Phys. Rev. Lett. 109 096602

[56]

Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Spin Hall effects Rev. Mod. Phys. 87 1213–60

[57]

Dyakonov M I and Perel V I 1971 Current-induced spin orientation of electrons in semiconductors Phys. Lett. A 35 459–60

[58]

Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 New perspectives for Rashba spin-orbit coupling Nat. Mater. 14 871–82

[59]

Edelstein V M 1990 Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems Solid State Commun. 73 233–5

[60]

Manchon A and Zhang S 2008 Theory of nonequilibrium intrinsic spin torque in a single nanomagnet Phys. Rev. B 78 212405

[61]

Zhang S, Levy P M and Fert A 2002 Mechanisms of spin-polarized current-driven magnetization switching Phys. Rev. Lett. 88 236601

[62]

Zhao X X, Zhang X Y, Yang H W, Cai W L, Zhao Y L, Wang Z H and Zhao W S 2019 Ultra-efficient spin-orbit torque induced magnetic switching in W/CoFeB/MgO structures Nanotechnology 30 335707

[63]

Qiu X P, Shi Z, Fan W J, Zhou S M and Yang H 2018 Characterization and manipulation of spin orbit torque in magnetic heterostructures Adv. Mater. 30 1705699

[64]

Wang L 2024 Sign change of the extrinsic spin Hall effect in binary alloys Phys. Rev. B 109 014208

[65]

Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping Phys. Rev. Lett 112 197201

[66]

Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K and Inoue J 2008 Intrinsic spin Hall effect and orbital Hall effect in 4d and 5d transition metals Phys. Rev. B 77 165117

[67]

Ando K and Saitoh E 2010 Inverse spin-Hall effect in palladium at room temperature J. Appl. Phys. 108 113925

[68]

Morota M, Niimi Y, Ohnishi K, Wei D H, Tanaka T, Kontani H, Kimura T and Otani Y 2011 Indication of intrinsic spin Hall effect in 4d and 5d transition metals Phys. Rev. B 83 174405

[69]

Vlaminck V, Pearson J E, Bader S D and Hoffmann A 2013 Dependence of spin-pumping spin Hall effect measurements on layer thicknesses and stacking order Phys. Rev. B 88 064414

[70]

Kondou K, Sukegawa H, Mitani S, Tsukagoshi K and Kasai S 2012 Evaluation of spin Hall angle and spin diffusion length by using spin current-induced ferromagnetic resonance Appl. Phys. Express 5 073002

[71]

Wang Y, Deorani P, Qiu X, Kwon J H and Yang H 2014 Determination of intrinsic spin Hall angle in Pt Appl. Phys. Lett. 105 152412

[72]

Azevedo A, Vilela-Leão L H, Rodríguez-Suárez R L, Lacerda Santos A F and Rezende S M 2011 Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: theory and experiment Phys. Rev. B 83 144402

[73]

Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Spin-torque ferromagnetic resonance induced by the spin Hall effect Phys. Rev. Lett. 106 036601

[74]

Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Spin-torque switching with the giant spin Hall effect of tantalum Science 336 555–8

[75]

Kumar A, Bansal R, Chaudhary S and Muduli P K 2018 Large spin current generation by the spin Hall effect in mixed crystalline phase Ta thin films Phys. Rev. B 98 104403

[76]

Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Spin transfer torque devices utilizing the giant spin Hall effect of tungsten Appl. Phys. Lett. 101 122404

[77]

Hao Q and Xiao G 2015 Giant spin Hall effect and switching induced by spin-transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular magnetic anisotropy Phys. Rev. Appl. 3 034009

[78]

Demasius K U, Phung T, Zhang W F, Hughes B P, Yang S H, Kellock A, Han W, Pushp A and Parkin S S P 2016 Enhanced spin-orbit torques by oxygen incorporation in tungsten films Nat. Commun. 7 10644

[79]

Fert A and Levy P M 2011 Spin Hall effect induced by resonant scattering on impurities in metals Phys. Rev. Lett. 106 157208

[80]

Niimi Y, Kawanishi Y, Wei D H, Deranlot C, Yang H X, Chshiev M, Valet T, Fert A and Otani Y 2012 Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys Phys. Rev. Lett. 109 156602

[81]

Hong C Y, Jin L C, Zhang H W, Li M M, Rao Y H, Ma B, Li J L, Zhong Z Y and Yang Q H 2018 Giant inverse spin Hall effect in Bi doped PtBi Alloy Adv. Electron. Mater. 4 1700632

[82]

Obstbaum M et al 2016 Tuning spin Hall angles by alloying Phys. Rev. Lett. 117 167204

[83]

Zhu L J, Ralph D C and Buhrman R A 2018 Highly efficient spin-current generation by the spin Hall effect in Au1−xPtx Phys. Rev. Appl. 10 031001

[84]

Sui X, Wang C, Kim J, Wang J F, Rhim S H, Duan W H and Kioussis N 2017 Giant enhancement of the intrinsic spin Hall conductivity in β-tungsten via substitutional doping Phys. Rev. B 96 241105

[85]

Derunova E, Sun Y, Felser C, Parkin S S P, Yan B and Ali M N 2019 Giant intrinsic spin Hall effect in W3Ta and other A15 superconductors Sci. Adv. 5 eaav8575

[86]

Qian L J, Wang K, Zheng Y and Xiao G 2020 Spin Hall effect in the α and β phases of TaxW1−x alloys Phys. Rev. B 102 094438

[87]

Yu P Y et al 2022 Different correlations between spin Hall angle measured by the 2nd harmonic method and by the critical current density due to dimension effect in W/Ta multilayers J. Magn. Magn. Mater. 554 169319

[88]

Khang N H D, Ueda Y and Hai P N 2018 A conductive topological insulator with large spin Hall effect for ultralow power spin-orbit torque switching Nat. Mater. 17 808–13

[89]

Miao B F, Huang S Y, Qu D and Chien C L 2013 Inverse spin Hall effect in a ferromagnetic metal Phys. Rev. Lett. 111 066602

[90]

Du C H, Wang H L, Yang F Y and Hammel P C 2014 Systematic variation of spin-orbit coupling with d-orbital filling: large inverse spin Hall effect in 3d transition metals Phys. Rev. B 90 140407

[91]

Zhang W, Jungfleisch M B, Freimuth F, Jiang W J, Sklenar J, Pearson J E, Ketterson J B, Mokrousov Y and Hoffmann A 2015 All-electrical manipulation of magnetization dynamics in a ferromagnet by antiferromagnets with anisotropic spin Hall effects Phys. Rev. B 92 144405

[92]

Zhang W, Jungfleisch M B, Jiang W J, Pearson J E, Hoffmann A, Freimuth F and Mokrousov Y 2014 Spin Hall effects in metallic antiferromagnets Phys. Rev. Lett. 113 196602

[93]

Ou Y X, Shi S J, Ralph D C and Buhrman R A 2016 Strong spin Hall effect in the antiferromagnet PtMn Phys. Rev. B 93 220405

[94]

Han J H, Richardella A, Siddiqui S A, Finley J, Samarth N and Liu L Q 2017 Room-temperature spin-orbit torque switching induced by a topological insulator Phys. Rev. Lett. 119 077702

[95]

Wang Y et al 2017 Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques Nat. Commun. 8 1364

[96]

Dc M et al 2018 Room-temperature high spin-orbit torque due to quantum confinement in sputtered BixSe(1−x) films Nat. Mater. 17 800–7

[97]

Chen T Y, Peng C W, Tsai T Y, Liao W B, Wu C T, Yen H W and Pai C F 2020 Efficient spin-orbit torque switching with nonepitaxial chalcogenide heterostructures ACS Appl. Mater. Interfaces 12 7788–94

[98]

Zhou J Q, Qiao J F, Bournel A and Zhao W S 2019 Intrinsic spin Hall conductivity of the semimetals MoTe2 and WTe2 Phys. Rev. B 99 060408(R)

[99]

Zhao B, Khokhriakov D, Zhang Y, Fu H X, Karpiak B, Hoque A M, Xu X G, Jiang Y, Yan B H and Dash S P 2020 Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature Phys. Rev. Res. 2 013286

[100]

Xu H J et al 2020 High spin Hall conductivity in large-area type-Ⅱ Dirac semimetal PtTe2 Adv. Mater. 32 2000513

[101]

Zhang Y et al 2023 Room temperature field-free switching of perpendicular magnetization through spin-orbit torque originating from low-symmetry type Ⅱ Weyl semimetal Sci. Adv. 9 eadg9819

[102]

Liu Y K et al 2023 Field-free switching of perpendicular magnetization at room temperature using out-of-plane spins from TaIrTe4 Nat. Electron. 6 732–8

[103]

Yu G Q et al 2014 Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields Nat. Nanotechnol. 9 548–54

[104]

You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J and Salahuddin S 2015 Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy Proc. Natl Acad. Sci. USA 112 10310–5

[105]

Wu H et al 2021 Chiral symmetry breaking for deterministic switching of perpendicular magnetization by spin-orbit torque Nano Lett. 21 515–21

[106]

Yang M Y et al 2021 All-linear multistate magnetic switching induced by electrical current Phys. Rev. Appl. 15 054013

[107]

Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system Nat. Mater. 15 535–41

[108]

Oh Y W et al 2016 Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures Nat. Nanotechnol. 11 878–84

[109]

Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Spin-orbit torque switching without an external field using interlayer exchange coupling Nat. Nanotechnol. 11 758–62

[110]

Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M and Han X F 2019 Spin-orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes Nat. Commun. 10 233

[111]

MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers Nat. Phys. 13 300–5

[112]

Hu S et al 2022 Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet Nat. Commun. 13 4447

[113]

You Y F et al 2021 Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet Nat. Commun. 12 6524

[114]

Karube S, Tanaka T, Sugawara D, Kadoguchi N, Kohda M and Nitta J 2022 Observation of spin-splitter torque in collinear antiferromagnetic RuO2 Phys. Rev. Lett. 129 137201

[115]

Baek S H C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Spin currents and spin-orbit torques in ferromagnetic trilayers Nat. Mater. 17 509–13

[116]

Cai K M et al 2017 Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure Nat. Mater. 16 712–6

[117]

Wang M et al 2018 Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin-orbit and spin-transfer torques Nat. Electron. 1 582–8

[118]

Yang T Z, Yang M Y, Zhao L, Gao J F, Xiang Q Y, Li W J, Luo F L, Ye L and Luo J 2022 Field-free deterministic writing of spin-orbit torque magnetic tunneling junction by unipolar current IEEE Electron. Device Lett. 43 709–12

[119]

Pai C F, Mann M, Tan A J and Beach G S D 2016 Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy Phys. Rev. B 93 144409

[120]

Cui B S et al 2019 Field-free spin-orbit torque switching of perpendicular magnetization by the Rashba interface ACS Appl. Mater. Interfaces 11 39369–75

[121]

Razavi A, Wu H, Shao Q M, Fang C, Dai B Q, Wong K, Han X F, Yu G Q and Wang K L 2020 Deterministic spin-orbit torque switching by a light-metal insertion Nano Lett. 20 3703–9

[122]

Yu G Q, Chang L T, Akyol M, Upadhyaya P, He C L, Li X, Wong K L, Amiri P K and Wang K L 2014 Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry Appl. Phys. Lett. 105 102411

[123]

Akyol M, Yu G Q, Alzate J G, Upadhyaya P, Li X, Wong K L, Ekicibil A, Amiri P K and Wang K L 2015 Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures Appl. Phys. Lett. 106 162409

[124]

Yu G Q et al 2016 Competing effect of spin-orbit torque terms on perpendicular magnetization switching in structures with multiple inversion asymmetries Sci. Rep. 6 23956

[125]

Torrejon J, Garcia-Sanchez F, Taniguchi T, Sinha J, Mitani S, Kim J V and Hayashi M 2015 Current-driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures Phys. Rev. B 91 214434

[126]

Mohanan V, Ganesh K R and Kumar P S A 2017 Spin Hall effect mediated current-induced deterministic switching in all-metallic perpendicularly magnetized Pt/Co/Pt trilayers Phys. Rev. B 96 104412

[127]

Safeer C K, Jué E, Lopez A, Buda-Prejbeanu L, Auffret S, Pizzini S, Boulle O, Miron I M and Gaudin G 2016 Spin-orbit torque magnetization switching controlled by geometry Nat. Nanotechnol. 11 143–6

[128]

Lu Z Y, Xiong C Y, Mou H M, Luo Z C, Jiang W J, Zhang X X and Zhang X Z 2021 Nonvolatile magnetic memory combined with AND/NAND Boolean logic gates based on geometry-controlled magnetization switching IEEE Magn. Lett. 12 4500105

[129]

Lee J M, Cai K M, Yang G, Liu Y, Ramaswamy R, He P and Yang H 2018 Field-free spin-orbit torque switching from geometrical domain-wall pinning Nano Lett. 18 4669–74

[130]

Dao T P, Müller M, Luo Z C, Baumgartner M, Hrabec A, Heyderman L J and Gambardella P 2019 Chiral domain wall injector driven by spin-orbit torques Nano Lett. 19 5930–7

[131]

Luo Z C, Hrabec A, Dao T P, Sala G, Finizio S, Feng J X, Mayr S, Raabe J, Gambardella P and Heyderman L J 2020 Current-driven magnetic domain-wall logic Nature 579 214–8

[132]

Luo Z C et al 2019 Chirally coupled nanomagnets Science 363 1435–9

[133]

Luo Z C et al 2021 Field- and current-driven magnetic domain-wall inverter and diode Phys. Rev. Appl. 15 034077

[134]

Gambardella P, Luo Z C and Heyderman L J 2021 Magnetic logic driven by electric current Phys. Today 74 62–63

[135]

Hrabec A, Luo Z C, Heyderman L J and Gambardella P 2020 Synthetic chiral magnets promoted by the Dzyaloshinskii-Moriya interaction Appl. Phys. Lett. 117 130503

[136]

Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z and Wang K Y 2020 Deterministic magnetization switching using lateral spin-orbit torque Adv. Mater. 32 1907929

[137]

Zhang N, Cao Y, Li Y C, Rushforth A W, Ji Y, Zheng H Z and Wang K Y 2020 Complementary lateral-spin-orbit building blocks for programmable logic and in-memory computing Adv. Electron. Mater. 6 2000296

[138]

Wu Y Z, Zeng X X, Guo Y H, Jia Q, Wang B and Cao J W 2021 Spin-orbit torque-induced magnetization switching in Pt/Co-Tb/Ta structures Appl. Phys. Lett. 118 022401

[139]

Li Y R, Yang M Y, Yu G Q, Cui B S and Luo J 2022 Current controlled non-hysteresis magnetic switching in the absence of magnetic field Appl. Phys. Lett. 120 062402

[140]

van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M and Koopmans B 2016 Field-free magnetization reversal by spin-Hall effect and exchange bias Nat. Commun. 7 10854

[141]

Kong W J et al 2016 Field-free spin Hall effect driven magnetization switching in Pd/Co/IrMn exchange coupling system Appl. Phys. Lett. 109 132402

[142]
Peng S Z, Lu J Q, Li W X, Wang L Z, Zhang H, Li X, Wang K L and Zhao W S 2019 Field-free switching of perpendicular magnetization through voltage-gated spin-orbit torque 2019 IEEE International Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 28.6.1–4
[143]

Li W X, Peng S Z, Lu J Q, Wu H, Li X, Xiong D R, Zhang Y, Zhang Y G, Wang K L and Zhao W S 2021 Experimental demonstration of voltage-gated spin-orbit torque switching in an antiferromagnet/ferromagnet structure Phys. Rev. B 103 094436

[144]

Peng S Z et al 2020 Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin-orbit torque Nat. Electron. 3 757–64

[145]

Liu X H, Edmonds K W, Zhou Z P and Wang K Y 2020 Tuning interfacial spins in antiferromagnetic-ferromagnetic-heavy-metal heterostructures via spin-orbit torque Phys. Rev. Appl. 13 014059

[146]

Zhou Z P, Liu X H and Wang K Y 2020 Controlling vertical magnetization shift by spin-orbit torque in ferromagnetic/antiferromagnetic/ferromagnetic heterostructure Appl. Phys. Lett. 116 062403

[147]

Razavi S A et al 2017 Joule heating effect on field-free magnetization switching by spin-orbit torque in exchange-biased systems Phys. Rev. Appl. 7 024023

[148]

Kwak W Y, Kwon J H, Grünberg P, Han S H and Cho B K 2018 Current-induced magnetic switching with spin-orbit torque in an interlayer-coupled junction with a Ta spacer layer Sci. Rep. 8 3826

[149]

Murray N, Liao W B, Wang T C, Chang L J, Tsai L Z, Tsai T Y, Lee S F and Pai C F 2019 Field-free spin-orbit torque switching through domain wall motion Phys. Rev. B 100 104441

[150]

Wu H, Razavi S A, Shao Q M, Li X, Wong K L, Liu Y X, Yin G and Wang K L 2019 Spin-orbit torque from a ferromagnetic metal Phys. Rev. B 99 184403

[151]

Wang X et al 2018 Field-free programmable spin logics via chirality-reversible spin-orbit torque switching Adv. Mater. 30 1801318

[152]

Xie Q et al 2021 Field-free magnetization switching induced by the unconventional spin–orbit torque from WTe2 APL Mater. 9 051114

[153]

Kao IH et al 2022 Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2 Nat. Mater. 21 1029–34

[154]

Guimarães M H D, Stiehl G M, MacNeill D, Reynolds N D and Ralph D C 2018 Spin-orbit torques in NbSe2/Permalloy bilayers Nano Lett. 18 1311–6

[155]

Zhou J et al 2020 Magnetic asymmetry induced anomalous spin-orbit torque in IrMn Phys. Rev. B 101 184403

[156]

Chen X Z et al 2021 Observation of the antiferromagnetic spin Hall effect Nat. Mater. 20 800–4

[157]

Liu L et al 2021 Symmetry-dependent field-free switching of perpendicular magnetization Nat. Nanotechnol. 16 277–82

[158]

Kimata M et al 2019 Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet Nature 565 627–30

[159]

Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, MacDonald A H, Nakatsuji S and Otani Y 2021 Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet Nat. Commun. 12 6491

[160]

Nan T et al 2020 Controlling spin current polarization through non-collinear antiferromagnetism Nat. Commun. 11 4671

[161]

Bose A et al 2022 Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide Nat. Electron. 5 267–74

[162]

Bai H et al 2022 Observation of spin splitting torque in a collinear antiferromagnet RuO2 Phys. Rev. Lett. 128 197202

[163]

González-Hernández R, Šmejkal L, Výborný K, Yahagi Y, Sinova J, Jungwirth T and Železný J 2021 Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism Phys. Rev. Lett. 126 127701

[164]

Šmejkal L, González-Hernández R, Jungwirth T and Sinova J 2020 Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets Sci. Adv. 6 eaaz8809

[165]

Oh Y W, Ryu J, Kang J and Park B G 2019 Material and thickness investigation in ferromagnet/Ta/CoFeB trilayers for enhancement of spin-orbit torque and field-free switching Adv. Electron. Mater. 5 1900598

[166]

Kang M G et al 2021 Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures Nat. Commun. 12 7111

[167]

Ryu J et al 2022 Author correction: efficient spin-orbit torque in magnetic trilayers using all three polarizations of a spin current Nat. Electron. 5 403

[168]

Chen S H et al 2019 Free field electric switching of perpendicularly magnetized thin film by spin current gradient ACS Appl. Mater. Interfaces 11 30446–52

[169]

Sato N, Xue F, White R M, Bi C and Wang S X 2018 Two-terminal spin-orbit torque magnetoresistive random access memory Nat. Electron. 1 508–11

[170]

Shi K W et al 2021 Experimental demonstration of NAND-like spin-torque memory unit IEEE Electron. Device Lett. 42 513–6

[171]

Cai W L et al 2021 Sub-ns field-free switching in perpendicular magnetic tunnel junctions by the interplay of spin transfer and orbit torques IEEE Electron. Device Lett. 42 704–7

[172]
Garello K et al 2019 Manufacturable 300mm platform solution for field-free switching SOT-MRAM 2019 Symp. on VLSI Technology (Kyoto, Japan) (IEEE) pp T194–5
[173]

Zhao Z Y, Smith A K, Jamali M and Wang J P 2020 External-field-free spin Hall switching of perpendicular magnetic nanopillar with a dipole-coupled composite structure Adv. Electron. Mater. 6 1901368

[174]

Ma Q L, Li Y F, Gopman D B, Kabanov Y P, Shull R D and Chien C L 2018 Switching a perpendicular ferromagnetic layer by competing spin currents Phys. Rev. Lett. 120 117703

[175]

Bekele Z A, Liu X H, Cao Y and Wang K Y 2021 High-efficiency spin-orbit torque switching using a single heavy-metal alloy with opposite spin Hall angles Adv. Electron. Mater. 7 2000793

[176]

Bekele Z A, Li R Z, Li Y C, Cao Y, Liu X H and Wang K Y 2021 Tuning the high-efficiency field-free current-induced deterministic switching via ultrathin PtMo layer with Mo content Adv. Electron. Mater. 7 2100528

[177]

Zheng Z Y et al 2021 Field-free spin-orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient Nat. Commun. 12 4555

[178]

He W Q et al 2022 Field-free spin-orbit torque switching enabled by the interlayer Dzyaloshinskii-Moriya interaction Nano Lett. 22 6857–65

[179]

Sheng Y, Wang W Y, Deng Y C, Ji Y, Zheng H Z and Wang K Y 2023 Electrically function-switchable magnetic domain-wall memory Natl Sci. Rev. 10 nwad093

[180]

Tezuka N, Ikeda N, Sugimoto S and Inomata K 2006 175% Tunnel magnetoresistance at room temperature and high thermal stability using Co2FeAl0.5Si0.5 full-Heusler alloy electrodes Appl. Phys. Lett. 89 252508

[181]

Sato H, Enobio E C I, Yamanouchi M, Ikeda S, Fukami S, Kanai S, Matsukura F and Ohno H 2014 Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm Appl. Phys. Lett. 105 062403

[182]

Kim J H, Lee J B, An G G, Yang S M, Chung W S, Park H S and Hong J P 2015 Ultrathin W space layer-enabled thermal stability enhancement in a perpendicular MgO/CoFeB/W/CoFeB/MgO recording frame Sci. Rep. 5 16903

[183]

Lee S E, Takemura Y and Park J G 2016 Effect of double MgO tunneling barrier on thermal stability and TMR ratio for perpendicular MTJ spin-valve with tungsten layers Appl. Phys. Lett. 109 182405

[184]

Liu Y, Yu T, Zhu Z Y, Zhong H C, Khamis K M and Zhu K G 2016 High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy J. Magn. Magn. Mater. 410 123–7

[185]

Miura S, Nguyen T V A, Endoh Y, Sato H, Ikeda S, Nishioka K, Honjo H and Endoh T 2019 Insertion layer thickness dependence of magnetic and electrical properties for double-CoFeB/MgO-interface magnetic tunnel junctions IEEE Trans. Magn. 55 3401004

[186]

Nishioka K, Miura S, Honjo H, Naganuma H, Nguyen T V A, Watanabe T, Ikeda S and Endoh T 2022 Effect of magnetic coupling between two CoFeB layers on thermal stability in perpendicular magnetic tunnel junctions with MgO/CoFeB/insertion layer/CoFeB/MgO free layer IEEE Trans. Magn. 58 4400406

[187]

Nishioka K, Honjo H, Naganuma H, Nguyen T V A, Yasuhira M, Ikeda S and Endoh T 2021 Enhancement of magnetic coupling and magnetic anisotropy in MTJs with multiple CoFeB/MgO interfaces for high thermal stability AIP Adv. 11 025231

[188]

Lee J B, An G G, Yang S M and Hong J P 2014 Influence of thickness variation on perpendicular magnetic anisotropy features of the [Co/Pt]n multilayer frame J. Nanosci. Nanotechnol. 14 8792–5

[189]

Yakushiji K, Kubota H, Fukushima A and Yuasa S 2015 Perpendicular magnetic tunnel junctions with strong antiferromagnetic interlayer exchange coupling at first oscillation peak Appl. Phys. Express 8 083003

[190]

Moon K S, Fontana R E and Parkin S S P 1999 Exchange-biased magnetic tunnel junctions: dependence of offset field on junction width Appl. Phys. Lett. 74 3690–2

[191]
Lee Y M, Yoshida C, Tsunoda K, Umehara S, Aoki M and Sugii T 2010 Highly scalable STT-MRAM with MTJs of top-pinned structure in 1T/1MTJ cell 2010 Symp. on VLSI Technology (Honolulu, HI, USA) (IEEE) pp 49–50
[192]

Braganca P M, Katine J A, Emley N C, Mauri D, Childress J R, Rice P M, Delenia E, Ralph D C and Buhrman R A 2009 A three-terminal approach to developing spin-torque written magnetic random access memory cells IEEE Trans. Nanotechnol. 8 190–5

[193]

Yang T Z, Gao J F, Cui Y, Xu J, Li J F, Wang W W, Luo J and Yang M Y 2021 Thermal stability of SOT-MTJ thin films tuning by multiple interlayer couplings J. Magn. Magn. Mater. 529 167823

[194]
Sato N et al 2020 CMOS compatible process integration of SOT-MRAM with heavy-metal Bi-layer bottom electrode and 10ns field-free SOT switching with STT assist 2020 IEEE Symp. on VLSI Technology (Honolulu, HI, USA) (IEEE) pp 1–2
[195]
Tsou Y J et al 2021 First demonstration of interface-enhanced SAF enabling 400 ℃-robust 42 nm p-SOT-MTJ cells with STT-assisted field-free switching and composite channels 2021 Symp. on VLSI Technology (Kyoto, Japan) (IEEE) pp 1–2
[196]

Ren H W, Wu S Y, Sun J Z and Fullerton E E 2021 Ion beam etching dependence of spin-orbit torque memory devices with switching current densities reduced by Hf interlayers APL Mater. 9 091101

[197]

Rahaman S Z et al 2018 Pulse-width and temperature effect on the switching behavior of an etch-stop-on-MgO-barrier spin-orbit torque MRAM cell IEEE Electron. Device Lett. 39 1306–9

[198]
Rahaman S, Chang Y J, Hsin Y C, Yang S Y, Chen F M, Chen K M, Wang I, Lee H H, Chen G L and Su Y H 2022 Development of highly manufacturable, reliable, and energy-efficient spin-orbit torque magnetic random access memory (SOT-MRAM) 2022 Int. Symp. on VLSI Technology, Systems and Applications (VLSI-TSA) (Hsinchu, China) (IEEE) pp 1–2
[199]

Tsou Y J et al 2022 Demonstration of high endurance and retention spin-transfer-torque-assisted field-free perpendicular spin-orbit torque cells by an etch-stop-on-MgO process IEEE Electron. Device Lett. 43 1661–4

[200]

Zhao L et al 2023 Enhancement of magnetic and electric transport performance of perpendicular spin-orbit torque magnetic tunnel junction by stop-on-MgO etching process IEEE Electron. Device Lett. 44 408–11

[201]

Li W X, Liu Z, Peng S, Lu J, Liu J, Li X, Lu S, Otani Y and Zhao W 2024 Selective data writing in IrMn-based perpendicular magnetic tunnel junction array through voltage-gated spin-orbit torque IEEE Electron. Device Lett. 45 921–4

[202]

Dery H, Dalal P, Cywiński Ł and Sham L J 2007 Spin-based logic in semiconductors for reconfigurable large-scale circuits Nature 447 573–6

[203]

Behin-Aein B, Datta D, Salahuddin S and Datta S 2010 Proposal for an all-spin logic device with built-in memory Nat. Nanotechnnol. 5 266–70

[204]

Zanotti T, Puglisi F M and Pavan P 2020 Reconfigurable smart in-memory computing platform supporting logic and binarized neural networks for low-power edge devices IEEE J. Emerg. Sel. Top. Circuits Syst. 10 478–87

[205]

Jain S, Ranjan A, Roy K and Raghunathan A 2018 Computing in memory with spin-transfer torque magnetic RAM IEEE Trans. Very Large Scale Integr. VLSI Syst. 26 470–83

[206]

Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U and Han X F 2017 Programmable spin logic based on spin Hall effect in a single device Adv. Electron. Mater. 3 1600282

[207]

Zhao Y C, Yang G, Shen J X, Gao S, Zhang J Y, Qi J, Lyu H, Yu G Q, Jin K and Wang S G 2021 Implementation of complete Boolean logic functions in single spin–orbit torque device AIP Adv. 11 015045

[208]

Gao S, Yang G, Cui B, Wang S G, Zeng F, Song C and Pan F 2016 Realization of all 16 Boolean logic functions in a single magnetoresistance memory cell Nanoscale 8 12819–25

[209]

Wang W Y, Sheng Y, Zheng Y H, Ji Y and Wang K Y 2022 All-electrical programmable domain-wall spin logic-in-memory device Adv. Electron. Mater. 8 2200412

[210]

Li R Z, Li Y C, Sheng Y, Bekele Z A and Wang K Y 2021 All-electrical multifunctional spin logics by adjusting the spin current density gradient in a single device ACS Appl. Electron. Mater. 3 2646–51

[211]

Yang M Y et al 2019 Spin logic devices via electric field controlled magnetization reversal by spin-orbit torque IEEE Electron. Device Lett. 40 1554–7

[212]

Zhao X N, Dong Y N, Chen W B, Xie X J, Bai L H, Chen Y X, Kang S S, Yan S S and Tian Y F 2021 Purely electrical controllable complete spin logic in a single magnetic heterojunction Adv. Funct. Mater. 31 2105359

[213]

Dong Y N, Zhao X N, Han X, Fan Y B, Xie X J, Chen Y X, Bai L H, Dai Y Y, Yan S S and Tian Y F 2021 Spin–orbit torque controllable complete spin logic in a single magnetic heterojunction Appl. Phys. Lett. 118 152403

[214]

Zhao L et al 2022 Spin logic operated by unipolar voltage inputs IEEE Electron. Device Lett. 43 1239–42

[215]

Holt C E, Martin K C and Schuman E M 2019 Local translation in neurons: visualization and function Nat. Struct. Mol. Biol. 26 557–66

[216]

Rosenblatt F 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol. Rev. 65 386–408

[217]

LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Gradient-based learning applied to document recognition Proc. IEEE 86 2278–324

[218]

LeCun Y, Boser B, Denker J S, Henderson D, Howard R E, Hubbard W and Jackel L D 1989 Backpropagation applied to handwritten zip code recognition Neural Comput. 1 541–51

[219]

LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature 521 436–44

[220]

Hochreiter S and Schmidhuber J 1997 Long short-term memory Neural Comput. 9 1735–80

[221]

Li Z W, Liu F, Yang W J, Peng S H and Zhou J 2022 A survey of convolutional neural networks: analysis, applications, and prospects IEEE Trans. Neural Netw. Learn. Syst. 33 6999–7019

[222]

Wang Y B, Wu H X, Zhang J J, Gao Z F, Wang J M, Yu P S and Long M S 2023 PredRNN: a recurrent neural network for spatiotemporal predictive learning IEEE Trans. Pattern Anal. Mach. Intell. 45 2208–25

[223]

Maass W 1997 Networks of spiking neurons: the third generation of neural network models Neural Netw. 10 1659–71

[224]

Sengupta A, Banerjee A and Roy K 2016 Hybrid spintronic-CMOS spiking neural network with on-chip learning: devices, circuits, and systems Phys. Rev. Appl. 6 064003

[225]

Roy K, Jaiswal A and Panda P 2019 Towards spike-based machine intelligence with neuromorphic computing Nature 575 607–17

[226]

Aggarwal A, Mittal M and Battineni G 2021 Generative adversarial network: an overview of theory and applications Int. J. Inf. Manage. Data Insights 1 100004

[227]

Guo M H, Xu T X, Liu J J, Liu Z N, Jiang P T, Mu T J, Zhang S H, Martin R R, Cheng M M and Hu S M 2022 Attention mechanisms in computer vision: a survey Comput. Vis. Media 8 331–68

[228]

Wulf W A and McKee S A 1995 Hitting the memory wall: implications of the obvious ACM SIGARCH Comput. Archit. News 23 20–24

[229]

Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nanoscale memristor device as synapse in neuromorphic systems Nano Lett. 10 1297–301

[230]

Chicca E, Stefanini F, Bartolozzi C and Indiveri G 2014 Neuromorphic electronic circuits for building autonomous cognitive systems Proc. IEEE 102 1367–88

[231]
Angizi S, He Z Z, Reis D, Hu X S, Tsai W, Lin S J and Fan D L 2019 Accelerating deep neural networks in processing-in-memory platforms: analog or digital approach? 2019 IEEE Computer Society Annual Symp. on VLSI (ISVLSI) (Miami, FL, USA) (IEEE) pp 197–202
[232]
Endoh T, Honjo H, Nishioka K and Ikeda S 2020 Recent progresses in STT-MRAM and SOT-MRAM for next generation MRAM 2020 IEEE Symp. on VLSI Technology (Honolulu, HI, USA) (IEEE) pp 1–2
[233]
Song M Y et al 2022 High speed (1ns) and low voltage (1.5V) demonstration of 8Kb SOT-MRAM array 2022 IEEE Symp. on VLSI Technology and Circuits (VLSI Technology and Circuits) (Honolulu, HI, USA) (IEEE) pp 377–8
[234]
Bottou L and Bousquet O 2007 The tradeoffs of large scale learning Proc. 20th Int. Conf. on Neural Information Processing Systems (Vancouver, British Columbia, Canada) (ACM) pp 161–8
[235]
Locatelli N Vincent A F and Querlioz D 2018 Use of magnetoresistive random-access memory as approximate memory for training neural networks 2018 25th IEEE Int. Conf. on Electronics, Circuits and Systems (ICECS) (Bordeaux, France) (IEEE) pp 533–56
[236]

Lippmann R 1987 An introduction to computing with neural nets IEEE ASSP Mag. 4 4–22

[237]

Zhang W Q, Gao B, Tang J S, Yao P, Yu S M, Chang M F, Yoo H J, Qian H and Wu H Q 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82

[238]

Rahimi Azghadi M et al 2020 Complementary metal-oxide semiconductor and memristive hardware for neuromorphic computing Adv. Intell. Syst. 2 1900189

[239]

Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Training and operation of an integrated neuromorphic network based on metal-oxide memristors Nature 521 61–64

[240]

Indiveri G et al 2011 Neuromorphic silicon neuron circuits Front. Neurosci. 5 73

[241]

Hwang S, Yu J S, Lee G H, Song M S, Chang J, Min K K, Jang T, Lee J H, Park B G and Kim H 2022 Capacitor-based synaptic devices for hardware spiking neural networks IEEE Electron. Device Lett. 43 549–52

[242]
Sengupta A and Roy K 2015 Spin-transfer torque magnetic neuron for low power neuromorphic computing 2015 Int. Joint Conf. on Neural Networks (IJCNN) (Killarney, Ireland) (IEEE) pp 1–7
[243]

Sengupta A, Choday S H, Kim Y and Roy K 2015 Spin orbit torque based electronic neuron Appl. Phys. Lett. 106 143701

[244]
Sengupta A 2018 Efficient Neuromorphic Computing Enabled by Spin-Transfer Torque: Devices, Circuits and Systems (Purdue University)
[245]

Mizrahi A, Hirtzlin T, Fukushima A, Kubota H, Yuasa S, Grollier J and Querlioz D 2018 Neural-like computing with populations of superparamagnetic basis functions Nat. Commun. 9 1533

[246]

Sengupta A and Roy K 2016 A vision for all-spin neural networks: a device to system perspective IEEE Trans. Circuits Syst. I 63 2267–77

[247]

Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A, Matsumoto R, Kubota H, Yuasa S and Grollier J 2016 A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy Sci. Rep. 6 31510

[248]

Song M, Duan W, Zhang S, Chen Z J and You L 2021 Power and area efficient stochastic artificial neural networks using spin–orbit torque-based true random number generator Appl. Phys. Lett. 118 052401

[249]

Sengupta A and Roy K 2018 Neuromorphic computing enabled by physics of electron spins: prospects and perspectives Appl. Phys. Express 11 030101

[250]

Liu L et al 2024 Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware Nat. Commun. 15 4534

[251]

Cao Y, Rushforth A, Sheng Y, Zheng H Z and Wang K Y 2019 Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity Adv. Funct. Mater. 29 1808104

[252]

Fan D L, Shim Y, Raghunathan A and Roy K 2015 STT-SNN: a spin-transfer-torque based soft-limiting non-linear neuron for low-power artificial neural networks IEEE Trans. Nanotechnol. 14 1013–23

[253]
Stursa D and Dolezel P 2019 Comparison of ReLU and linear saturated activation functions in neural network for universal approximation 22nd Int. Conf. on Process Control (Strbske Pleso, Slovakia) (IEEE) pp 146–51
[254]

Sharad M, Augustine C, Panagopoulos G and Roy K 2012 Spin-based neuron model with domain-wall magnets as synapse IEEE Trans. Nanotechnol. 11 843–53

[255]

Sengupta A, Shim Y and Roy K 2016 Proposal for an all-spin artificial neural network: emulating neural and synaptic functionalities through domain wall motion in ferromagnets IEEE Trans. Biomed. Circuits Syst. 10 1152–60

[256]
Sengupta A, Han B and Roy K 2016 Toward a spintronic deep learning spiking neural processor 2016 IEEE Biomedical Circuits and Systems Conf. (BioCAS) (Shanghai, China) (IEEE) pp 544–7
[257]

Sengupta A, Panda P, Wijesinghe P, Kim Y and Roy K 2016 Magnetic tunnel junction mimics stochastic cortical spiking neurons Sci. Rep. 6 30039

[258]

Kondo K, Choi J Y, Baek J U, Jun H S, Jung S, Shim T H and Park J G 2018 A two-terminal perpendicular spin-transfer torque based artificial neuron J. Phys. D: Appl. Phys. 51 504002

[259]

Jo S H, Kim K H and Lu W 2009 High-density crossbar arrays based on a Si memristive system Nano Lett. 9 870–4

[260]
Jaiswal A, Agrawal A, Chakraborty I, Roy D and Roy K 2019 On robustness of spin-orbit-torque based stochastic sigmoid neurons for spiking neural networks 2019 Int. Joint Conf. on Neural Networks (IJCNN) (Budapest, Hungary) (IEEE) pp 1–6
[261]

Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Neuromorphic spintronics Nat. Electron. 3 360–70

[262]

Umesh S and Mittal S 2019 A survey of spintronic architectures for processing-in-memory and neural networks J. Syst. Archit. 97 349–72

[263]

Ghosh-Dastidar S and Adeli H 2009 Spiking neural networks Int. J. Neural Syst. 19 295–308

[264]

Sobie C, Babul A and de Sousa R 2011 Neuron dynamics in the presence of 1/f noise Phys. Rev. E 83 051912

[265]

Lapicque L 1907 Recherches quantitatives sur l'excitation electrique des nerfs traitée comme une polarization J. Physiol. Pathol. Gen. 9 620–35

[266]

Burkitt A N 2006 A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input Biol. Cybern. 95 1–19

[267]

Jaiswal A, Roy S, Srinivasan G and Roy K 2017 Proposal for a leaky-integrate-fire spiking neuron based on magnetoelectric switching of ferromagnets IEEE Trans. Electron. Devices 64 1818–24

[268]

Kurenkov A, DuttaGupta S, Zhang C L, Fukami S, Horio Y and Ohno H 2019 Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching Adv. Mater. 31 1900636

[269]
Wu M H et al 2020 Compact probabilistic Poisson neuron based on back-hopping oscillation in STT-MRAM for all-spin deep spiking neural network 2020 IEEE Symp. on VLSI Technology (Honolulu, HI, USA) (IEEE) pp 1–2
[270]

Querlioz D, Bichler O, Vincent A F and Gamrat C 2015 Bioinspired programming of memory devices for implementing an inference engine Proc. IEEE 103 1398–416

[271]

Krzysteczko P, Münchenberger J, Schäfers M, Reiss G and Thomas A 2012 The memristive magnetic tunnel junction as a nanoscopic synapse‐neuron system Adv. Mater. 24 762–6

[272]

Srinivasan G, Sengupta A and Roy K 2016 Magnetic tunnel junction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning Sci. Rep. 6 29545

[273]

Jung S et al 2022 A crossbar array of magnetoresistive memory devices for in-memory computing Nature 601 211–6

[274]

Vincent A F, Larroque J, Locatelli N, Romdhane N B, Bichler O, Gamrat C, Zhao W S, Klein J O, Galdin-Retailleau S and Querlioz D 2015 Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems IEEE Trans. Biomed. Circuits Syst. 9 166–74

[275]
Doevenspeck J et al 2020 SOT-MRAM based analog in-memory computing for DNN inference 2020 IEEE Symp. on VLSI Technology (Honolulu, HI, USA) (IEEE) pp 1–2
[276]

Lan X K, Liu X Y, Bekele Z A, Lei K and Wang K Y 2023 Field-free spin–orbit devices via heavy-metal alloy with opposite spin Hall angles for in-memory computing Appl. Phys. Lett. 122 172402

[277]
Alzate J G et al 2019 2 MB array-level demonstration of STT-MRAM process and performance towards L4 cache applications 2019 IEEE Int. Electron Devices Meeting (IEDM) (San Francisco, CA, USA) (IEEE) pp 2.4.1–4
[278]
Komalan M et al 2017 Cross-layer design and analysis of a low power, high density STT-MRAM for embedded systems 2017 IEEE Int. Symp. on Circuits and Systems (ISCAS) (Baltimore, MD, USA) (IEEE) pp 1–4
International Journal of Extreme Manufacturing
Cite this article:
Yang M, Cui Y, Chen J, et al. Materials, processes, devices and applications of magnetoresistive random access memory. International Journal of Extreme Manufacturing, 2025, 7(1). https://doi.org/10.1088/2631-7990/ad87cb
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return