Recurrent neural networks (RNNs) have proven to be indispensable for processing sequential and temporal data, with extensive applications in language modeling, text generation, machine translation, and time-series forecasting. Despite their versatility, RNNs are frequently beset by significant training expenses and slow convergence times, which impinge upon their deployment in edge AI applications. Reservoir computing (RC), a specialized RNN variant, is attracting increased attention as a cost-effective alternative for processing temporal and sequential data at the edge. RC's distinctive advantage stems from its compatibility with emerging memristive hardware, which leverages the energy efficiency and reduced footprint of analog in-memory and in-sensor computing, offering a streamlined and energy-efficient solution. This review offers a comprehensive explanation of RC's underlying principles, fabrication processes, and surveys recent progress in nano-memristive device based RC systems from the viewpoints of in-memory and in-sensor RC function. It covers a spectrum of memristive device, from established oxide-based memristive device to cutting-edge material science developments, providing readers with a lucid understanding of RC's hardware implementation and fostering innovative designs for in-sensor RC systems. Lastly, we identify prevailing challenges and suggest viable solutions, paving the way for future advancements in in-sensor RC technology.
Hermans M and Schrauwen B 2010 Memory in linear recurrent neural networks in continuous time Neural Netw. 23 341–55
Renanse A, Sharma A and Chandra R 2023 Memory capacity of recurrent neural networks with matrix representation Neurocomputing 560 126824
Schuster M and Paliwal K K 1997 Bidirectional recurrent neural networks IEEE Trans. Signal Process. 45 2673–81
Gupta L, McAvoy M and Phegley J 2000 Classification of temporal sequences via prediction using the simple recurrent neural network Pattern Recognit. 33 1759–70
Chien J T and Ku Y C 2016 Bayesian recurrent neural network for language modeling IEEE Trans. Neural Netw. Learn. Syst. 27 361–74
Chen M Y, Chiang H S, Sangaiah A K and Hsieh T C 2020 Recurrent neural network with attention mechanism for language model Neural Comput. Appl. 32 7915–23
Islam M S, Sharmin Mousumi S S, Abujar S and Hossain S A 2019 Sequence-to-sequence bangla sentence generation with LSTM recurrent neural networks Proc. Comput. Sci. 152 51–58
Mahata S K, Das D and Bandyopadhyay S 2019 MTIL2017: machine translation using recurrent neural network on statistical machine translation J. Intell. Syst. 28 447–53
Sagheer A and Kotb M 2019 Time series forecasting of petroleum production using deep LSTM recurrent networks Neurocomputing 323 203–13
Torti E, D'Amato C, Danese G and Leporati F 2021 A low power and real-time hardware recurrent neural network for time series analysis on wearable devices Microprocess. Microsyst. 87 104374
Sun K C, Koch M, Wang Z, Jovanovic S, Rabah H and Simon S 2022 An FPGA-based residual recurrent neural network for real-time video super-resolution IEEE Trans. Circuits Syst. Video Technol. 32 1739–50
Khomenko V, Shyshkov O, Radyvonenko O and Bokhan K 2016 Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization Proc. 2016 IEEE First Int. Conf. on Data Stream Mining & Processing (DSMP) (IEEE) pp 100–3
Cho H, Lee J and Lee J 2022 FARNN: FPGA-GPU hybrid acceleration platform for recurrent neural networks IEEE Trans. Parallel Distrib. Syst. 33 1725–38
Barak O 2017 Recurrent neural networks as versatile tools of neuroscience research Curr. Opin. Neurobiol. 46 1–6
Rupp K and Selberherr S 2011 The economic limit to Moore's law IEEE Trans. Semicond. Manuf. 24 1–4
Radamson H H et al 2019 Miniaturization of CMOS Micromachines 10 293
Keyes R W 1993 The future of the transistor Sci. Am. 268 70
Robinson A L 1980 Problems with ultraminiaturized transistors: making extremely small structures is only part of the challenge; new physical phenomena plague microcircuits as components shrink Science 208 1246–9
Keyes R W 2001 Fundamental limits of silicon technology Proc. IEEE 89 227–39
Zhang W Q, Gao B, Tang J S, Yao P, Yu S M, Chang M F, Yoo H J, Qian H and Wu H Q 2020 Neuro-inspired computing chips Nat. Electron. 3 371–82
Burr G W et al 2017 Neuromorphic computing using non-volatile memory Adv. Phys. X 2 89–124
Bengio Y, Simard P and Frasconi P 1994 Learning long-term dependencies with gradient descent is difficult IEEE Trans. Neural Netw. 5 157–66
Vlachas P R, Pathak J, Hunt B R, Sapsis T P, Girvan M, Ott E and Koumoutsakos P 2020 Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics Neural Netw. 126 191–217
Lin X D, Feng Z Y, Xiong Y, Sun W W, Yao W C, Wei Y C, Wang Z L and Sun Q J 2024 Piezotronic neuromorphic devices: principle, manufacture, and applications Int. J. Extrem. Manuf. 6 032011
Bai X Y, Wang D X, Zhen L Y, Cui M, Liu J Q, Zhao N, Lee C and Yang B 2024 Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Int. J. Extrem. Manuf. 6 062001
Wang Y F, Sun Q J, Yu J R, Xu N, Wei Y C, Cho J H and Wang Z L 2023 Boolean logic computing based on neuromorphic transistor Adv. Funct. Mater. 33 2305791
Wei Y C et al 2024 Mechano-driven logic-in-memory with neuromorphic triboelectric charge-trapping transistor Nano Energy 126 109622
Ji J L et al 2023 Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors InfoMat 5 e12478
Kim D, Shin J and Kim S 2022 Implementation of reservoir computing using volatile WOx-based memristor Appl. Surf. Sci. 599 153876
Yang J, Cho H, Ryu H, Ismail M, Mahata C and Kim S 2021 Tunable synaptic characteristics of a Ti/TiO2/Si memory device for reservoir computing ACS Appl. Mater. Interfaces 13 33244–52
Gallicchio C, Micheli A and Pedrelli L 2017 Deep reservoir computing: a critical experimental analysis Neurocomputing 268 87–99
Bianchi F M, Scardapane S, Lokse S and Jenssen R 2021 Reservoir computing approaches for representation and classification of multivariate time series IEEE Trans. Neural Netw. Learn. Syst. 32 2169–79
Verstraeten D, Schrauwen B, D'Haene M and Stroobandt D 2007 An experimental unification of reservoir computing methods Neural Netw. 20 391–403
Du C, Cai F X, Zidan M A, Ma W, Lee S H and Lu W D 2017 Reservoir computing using dynamic memristors for temporal information processing Nat. Commun. 8 2204
Shahi S, Fenton F H and Cherry E M 2022 Prediction of chaotic time series using recurrent neural networks and reservoir computing techniques: a comparative study Mach. Learn. Appl. 8 100300
Kutvonen A, Fujii K and Sagawa T 2020 Optimizing a quantum reservoir computer for time series prediction Sci. Rep. 10 14687
George A M, Dey S, Banerjee D, Mukherjee A and Suri M 2023 Online time-series forecasting using spiking reservoir Neurocomputing 518 82–94
Montuschi P, Chang Y H and Piuri V 2023 In-memory computing: the emerging computing topic in the post-von neumann era Computer 56 4–6
Zanotti T, Puglisi F M and Pavan P 2020 Smart logic-in-memory architecture for low-power non-von neumann computing IEEE J. Electron Devices Soc. 8 757–64
Wang T Y et al 2020 Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application Nano Lett. 20 4111–20
Wang Z R, Wu H Q, Burr G W, Hwang C S, Wang K L, Xia Q F and Yang J J 2020 Resistive switching materials for information processing Nat. Rev. Mater. 5 173–95
Kim K H, Gaba S, Wheeler D, Cruz-Albrecht J M, Hussain T, Srinivasa N and Lu W 2012 A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications Nano Lett. 12 389–95
Jeong H and Shi L P 2019 Memristor devices for neural networks J. Phys. D: Appl. Phys. 52 023003
Kim K M, Zhang J M, Graves C, Yang J J, Choi B J, Hwang C S, Li Z Y and Williams R S 2016 Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application Nano Lett. 16 6724–32
Chang T, Jo S H and Lu W 2011 Short-term memory to long-term memory transition in a nanoscale memristor ACS Nano 5 7669–76
Chen L, Zhou W H, Li C D and Huang J J 2021 Forgetting memristors and memristor bridge synapses with long- and short-term memories Neurocomputing 456 126–35
Berdan R, Vasilaki E, Khiat A, Indiveri G, Serb A and Prodromakis T 2016 Emulating short-term synaptic dynamics with memristive devices Sci. Rep. 6 18639
Jiang N J et al 2023 Bioinspired in‐sensor reservoir computing for self‐adaptive visual recognition with two‐dimensional dual‐mode phototransistors Adv. Opt. Mater. 11 2300271
Wang S C et al 2023 Echo state graph neural networks with analogue random resistive memory arrays Nat. Mach. Intell. 5 104–13
Liu K Q, Zhang T, Dang B J, Bao L, Xu L Y, Cheng C D, Yang Z, Huang R and Yang Y C 2022 An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing Nat. Electron. 5 761–73
Sun L F, Wang Z R, Jiang J B, Kim Y, Joo B, Zheng S J, Lee S, Yu W J, Kong B S and Yang H 2021 In-sensor reservoir computing for language learning via two-dimensional memristors Sci. Adv. 7 eabg1455
Tanaka G, Yamane T, Héroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A 2019 Recent advances in physical reservoir computing: a review Neural Netw. 115 100–23
Lee J Y, Ju J E, Lee C, Won S M and Yu K J 2024 Novel fabrication techniques for ultra-thin silicon based flexible electronics Int. J. Extrem. Manuf. 6 042005
Zhu J L, Liu J M, Xu T L, Yuan S, Zhang Z X, Jiang H, Gu H G, Zhou R J and Liu S Y 2022 Optical wafer defect inspection at the 10 nm technology node and beyond Int. J. Extrem. Manuf. 4 032001
Zhang H C et al 2023 Recent advances in nanofiber-based flexible transparent electrodes Int. J. Extrem. Manuf. 5 032005
Ero O, Taherkhani K, Hemmati Y and Toyserkani E 2024 An integrated fuzzy logic and machine learning platform for porosity detection using optical tomography imaging during laser powder bed fusion Int. J. Extrem. Manuf. 6 065601
Xiao Z H et al 2024 Preparation of MXene-based hybrids and their application in neuromorphic devices Int. J. Extrem. Manuf. 6 022006
Sha L and Chang J P 2003 Plasma etching selectivity of ZrO2 to Si in BCl3/Cl2 plasmas J. Vac. Sci. Technol. A 21 1915–22
Matsuo P J, Kastenmeier B E E, Beulens J J and Oehrlein G S 1997 Role of N2 addition on CF4/O2 remote plasma chemical dry etching of polycrystalline silicon J. Vac. Sci. Technol. A 15 1801–13
Rueger N R, Beulens J J, Schaepkens M, Doemling M F, Mirza J M, Tefm S and Oehrlein G S 1997 Role of steady state fluorocarbon films in the etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor J. Vac. Sci. Technol. A 15 1881–9
Sun P X, Lu N D, Li L, Li Y T, Wang H, Lv H B, Liu Q, Long S B, Liu S and Liu M 2015 Thermal crosstalk in 3-dimensional RRAM crossbar array Sci. Rep. 5 13504
Sun X H, Zhang T, Cheng C D, Yan X Q, Cai Y M, Yang Y C and Huang R 2019 A memristor-based in-memory computing network for hamming code error correction IEEE Electron Device Lett. 40 1080–3
Jing Z K, Yan B N, Yang Y C and Huang R 2022 VSDCA: a voltage sensing differential column architecture based on 1T2R RRAM array for computing-in-memory accelerators IEEE Trans. Circuits Syst. I 69 4028–41
Zhou J D et al 2018 A library of atomically thin metal chalcogenides Nature 556 355–9
Shivayogimath A et al 2019 A universal approach for the synthesis of two-dimensional binary compounds Nat. Commun. 10 2957
Wang M H, Wang M XX, Liu P, AD K D H, Jo W J, Sojoudi H and Gleason K K 2017 CVD polymers for devices and device fabrication Adv. Mater. 29 1604606
Mag-Isa A E, Kim J H, Lee H J and Oh C S 2015 A systematic exfoliation technique for isolating large and pristine samples of 2D materials 2D Mater. 2 034017
Sozen Y, Riquelme J J, Xie Y, Munuera C and Castellanos-Gomez A 2023 High-throughput mechanical exfoliation for low-cost production of van der waals nanosheets Small Methods 7 2300326
Hu Z, Liu Z B and Tian J G 2020 Stacking of exfoliated two‐dimensional materials: a review Chin. J. Chem. 38 981–95
Aslanov L A and Dunaev S F 2018 Exfoliation of crystals Russ. Chem. Rev. 87 882–903
Li Y G, Kuang G Z, Jiao Z J, Yao L and Duan R H 2022 Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides Mater. Res. Express 9 122001
Manna K, Huang H N, Li W T, Ho Y H and Chiang W H 2016 Toward understanding the efficient exfoliation of layered materials by water-assisted cosolvent liquid-phase exfoliation Chem. Mater. 28 7586–93
Ciesielski A and Samorì P 2014 Graphene via sonication assisted liquid-phase exfoliation Chem. Soc. Rev. 43 381–98
Fang R R, Zhang W Y, Ren K, Zhang P W, Xu X X, Wang Z R and Shang D S 2023 In-materio reservoir computing based on nanowire networks: fundamental, progress, and perspective Mater. Futures 2 022701
Midya R, Wang Z R, Asapu S, Zhang X M, Rao M Y, Song W H, Zhuo Y, Upadhyay N, Xia Q F and Yang J J 2019 Reservoir computing using diffusive memristors Adv. Intell. Syst. 1 1900084
Wang Z R et al 2017 Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing Nat. Mater. 16 101–8
Moon J, Ma W, Shin J H, Cai F X, Du C, Lee S H and Lu W D 2019 Temporal data classification and forecasting using a memristor-based reservoir computing system Nat. Electron. 2 480–7
Mackey M C and Glass L 1977 Oscillation and chaos in physiological control systems Science 197 287–9
Zhong Y N, Tang J S, Li X Y, Gao B, Qian H and Wu H 2021 Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing Nat. Commun. 12 408
Li X Y et al 2020 Power-efficient neural network with artificial dendrites Nat. Nanotechnol. 15 776–82
Rodan A and Tino P 2011 Minimum complexity echo state network IEEE Trans. Neural Netw. 22 131–44
Cucchi M et al 2021 Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification Sci. Adv. 7 eabh0693
Goldberger A L, Amaral L A N, Glass L, Hausdorff J M, Ivanov P C, Mark R G, Mietus J E, Moody G B, Peng C K and Stanley H E 2000 PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals Circulation 101 e215–20
Milano G, Pedretti G, Montano K, Ricci S, Hashemkhani S, Boarino L, Ielmini D and Ricciardi C 2022 In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks Nat. Mater. 21 195–202
Liu X R, Sun C, Guo Z C, Xia X L, Jiang Q, Ye X Y, Shang J, Zhang Y J, Zhu X J and Li R W 2023 Near-sensor reservoir computing for gait recognition via a multi-gate electrolyte-gated transistor Adv. Sci. 10 2300471
Milano G, Pedretti G, Fretto M, Boarino L, Benfenati F, Ielmini D, Valov I and Ricciardi C 2020 Brain‐inspired structural plasticity through reweighting and rewiring in multi‐terminal self‐organizing memristive nanowire networks Adv. Intell. Syst. 2 2000096
Liu K Q, Dang B J, Zhang T, Yang Z, Bao L, Xu L Y, Cheng C D, Huang R and Yang Y C 2022 Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing Adv. Mater. 34 2108826
Zhang H T et al 2022 Reconfigurable perovskite nickelate electronics for artificial intelligence Science 375 533–9
Liang X P et al 2022 Rotating neurons for all-analog implementation of cyclic reservoir computing Nat. Commun. 13 1549
Connor J T, Martin R D and Atlas L E 1994 Recurrent neural networks and robust time series prediction IEEE Trans. Neural Netw. 5 240–54
Zhong Y N et al 2022 A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing Nat. Electron. 5 672–81
Lao J et al 2022 Ultralow-power machine vision with self-powered sensor reservoir Adv. Sci. 9 2106092
Zha J J et al 2023 Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band Adv. Mater. 35 2211598
Seo S et al 2021 An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network Adv. Mater. 33 2102980
Sun Y, Li Q J, Zhu X, Liao C, Wang Y Z, Li Z W, Liu S, Xu H and Wang W 2023 In‐sensor reservoir computing based on optoelectronic synapse Adv. Intell. Syst. 5 2200196
Pei M J, Zhu Y, Liu S Y, Cui H Y, Li Y T, Yan Y, Li Y, Wan C J and Wan Q 2023 Power-efficient multisensory reservoir computing based on Zr-Doped HfO2 memcapacitive synapse arrays Adv. Mater. 35 2305609
Yoshimura K and Hasegawa T 2024 Research on tactile sensation by physical reservoir computing with a robot arm and a Ag2S reservoir Jpn. J. Appl. Phys. 63 03SP17
Abreu Araujo F et al 2020 Role of non-linear data processing on speech recognition task in the framework of reservoir computing Sci. Rep. 10 328
Wang W J, Tang Y, Xiong J S and Zhang Y C 2021 Stock market index prediction based on reservoir computing models Expert Syst. Appl. 178 115022
Liu B C, Xie Y Y, Jiang X, Ye Y C, Song T T, Chai J X, Tang Q F and Feng M Y 2022 Forecasting stock market with nanophotonic reservoir computing system based on silicon optomechanical oscillators Opt. Express 30 23359–81
Bretherton C S 2023 Old dog, new trick: reservoir computing advances machine learning for climate modeling Geophys. Res. Lett. 50 e2023GL104174
de Vos N J 2012 Reservoir computing as an alternative to traditional artificial neural networks in rainfall-runoff modelling Hydrol. Earth Syst. Sci. Dis. 9 6101–34
Jang Y H, Lee S H, Han J, Kim W, Shim S K, Cheong S, Woo K S, Han J K and Hwang C S 2024 Spatiotemporal data processing with memristor crossbar-array-based graph reservoir Adv. Mater. 36 2309314
Chen R Q et al 2024 Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture Sci. Adv. 10 eadl1299
Xia Q F and Yang J J 2019 Memristive crossbar arrays for brain-inspired computing Nat. Mater. 18 309–23
Rao M Y et al 2023 Thousands of conductance levels in memristors integrated on CMOS Nature 615 823–9
Li C et al 2018 Analogue signal and image processing with large memristor crossbars Nat. Electron. 1 52–59
Zhang W B et al 2023 Edge learning using a fully integrated neuro-inspired memristor chip Science 381 1205–11
Lin P et al 2020 Three-dimensional memristor circuits as complex neural networks Nat. Electron. 3 225–32
Nili H, Adam G C, Hoskins B, Prezioso M, Kim J, Mahmoodi M R, Bayat F M, Kavehei O and Strukov D B 2018 Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors Nat. Electron. 1 197–202
Li C, Graves C E, Sheng X, Miller D, Foltin M, Pedretti G and Strachan J P 2020 Analog content-addressable memories with memristors Nat. Commun. 11 1638
Yan X D, Qian J H, Sangwan V K and Hersam M C 2022 Progress and challenges for memtransistors in neuromorphic circuits and systems Adv. Mater. 34 2108025
Buteneers P, Verstraeten D, van Mierlo P, Wyckhuys T, Stroobandt D, Raedt R, Hallez H and Schrauwen B 2011 Automatic detection of epileptic seizures on the intra-cranial electroencephalogram of rats using reservoir computing Artif. Intell. Med. 53 215–23
Bozhkov L, Koprinkova-Hristova P and Georgieva P 2017 Reservoir computing for emotion valence discrimination from EEG signals Neurocomputing 231 28–40
Wu X S, Wang S C, Huang W, Dong Y, Wang Z R and Huang W G 2023 Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning Nat. Commun. 14 468
Chandrasekaran S T, Bhanushali S P, Banerjee I and Sanyal A 2021 Toward real-time, at-home patient health monitoring using reservoir computing CMOS IC IEEE J. Emerg. Sel. Top. Circuits Syst. 11 829–39
Palumbo F, Gallicchio C, Pucci R and Micheli A 2016 Human activity recognition using multisensor data fusion based on reservoir computing J. Ambient Intell. Smart Environ. 8 87–107
Mwamsojo N, Lehmann F, El-Yacoubi M A, Merghem K, Frignac Y, Benkelfat B E and Rigaud A S 2022 Reservoir computing for early stage Alzheimer's disease detection IEEE Access 10 59821–31
Zhu X J, Wang Q W and Lu W D 2020 Memristor networks for real-time neural activity analysis Nat. Commun. 11 2439