Abstract
Basic capturing of emotion on user experience of web applications and browsing is important in many ways. Quite often, online user experience is studied via tangible measures such as task completion time, surveys and comprehensive tests from which data attributes are generated. Prediction of users’ emotion and behaviour in some of these cases depends mostly on task completion time and number of clicks per given time interval. However, such approaches are generally subjective and rely heavily on distributional assumptions making the results prone to recording errors. This paper aims to propose a novel method – a window dynamic control system – that addresses the foregoing issues.
Primary data were obtained from laboratory experiments during which 44 volunteers had their synchronized physiological readings – skin conductance response, skin temperature, eye movement behaviour and users activity attributes taken by biosensors. The window-based dynamic control system (PHYCOB I) is integrated to the biosensor which collects secondary data attributes from these synchronized physiological readings and uses them for two purposes: for detection of both optimal emotional responses and users’ stress levels. The method's novelty derives from its ability to integrate physiological readings and eye movement records to identify hidden correlates on a webpage.
The results from the analyses show that the control system detects basic emotions and outperforms other conventional models in terms of both accuracy and reliability, when subjected to model comparison – that is, the average recoverable natural structures for the three models with respect to accuracy and reliability are more consistent within the window-based control system environment than with the conventional methods.
Graphical simulation and an example scenario are only provided for the control's system design.
The novelty of the proposed model is its strained resistance to overfitting and its ability to automatically assess user emotion while dealing with specific web contents. The procedure can be used to predict which contents of webpages cause stress-induced emotions to users.