AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (212.3 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper | Open Access

An improved algorithm for personalized recommendation on MOOCs

Yuqin Wang1Bing Liang1Wen Ji1( )Shiwei Wang2Yiqiang Chen1
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
Weihai Yuanhang Technology Development Co. Ltd, Shandong, China
Show Author Information

Abstract

Purpose

In the past few years, millions of people started to acquire knowledge from the Massive Open Online Courses (MOOCs). MOOCs contain massive video courses produced by instructors, and learners all over the world can get access to these courses via the internet. However, faced with massive courses, learners often waste much time finding courses they like. This paper aims to explore the problem that how to make accurate personalized recommendations for MOOC users.

Design/methodology/approach

This paper proposes a multi-attribute weight algorithm based on collaborative filtering (CF) to select a recommendation set of courses for target MOOC users.

Findings

The recall of the proposed algorithm in this paper is higher than both the traditional CF and a CF-based algorithm – uncertain neighbors’ collaborative filtering recommendation algorithm. The higher the recall is, the more accurate the recommendation result is.

Originality/value

This paper reflects the target users’ preferences for the first time by calculating separately the weight of the attributes and the weight of attribute values of the courses.

References

 
Adomavicius, G. and Tuzhilin, A. (2013), “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions”, Multimedia Services in Intelligent Environments, Springer International Publishing, pp. 734-749.https://doi.org/10.1109/TKDE.2005.99
 

Al-Atabi, M. and Deboer, J. (2014), “Teaching entrepreneurship using massive open online course (mooc)”, Technovation, Vol. 34 No. 4, pp. 261-264.

 

Bobadilla, J., Ortega, F. and Hernando, A. (2012), “A collaborative filtering similarity measure based on singularities”, Information Processing & Management, Vol. 48 No. 2, pp. 204-217.

 

De Campos, L.M., Fernández-Luna, J.M., Huete, J.F. and Rueda-Morales, M.A. (2010), “Combining content-based and collaborative recommendations: a hybrid approach based on Bayesian networks”, International Journal of Approximate Reasoning, Vol. 51 No. 7, pp. 785-799.

 

Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2006), “An integrated environment for the development of knowledge-based recommender applications”, International Journal of Electronic Commerce, Vol. 11 No. 2, pp. 11-34.

 
Felfernig, A., Jeran, M., Ninaus, G., Reinfrank, F., Reiterer, S. and Stettinger, M. (2014), “Basic approaches in recommendation systems”, Recommendation Systems in Software Engineering, Springer, Berlin, pp. 15-37.https://doi.org/10.1007/978-3-642-45135-5_2
 

Feng, Z.J., Xian, T.A.N.G.A. and Feng, G.J. (2004), “An optimized collaborative filtering recommendation algorithm”, Journal of Computer Research and Development, Vol. 41, pp. 1842-1847.

 
Guo, Y. and Deng, G. (2007), “An Improved Personalized Collaborative Filterinng Algolrithm in E-Commerce Recommender System” International Conference on Service Systems and Service Management, IEEE, pp. 1582-1586.https://doi.org/10.1109/ICSSSM.2006.320772
 
Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J. (1999), “An algorithmic framework for performing collaborative filtering” Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, ACM, pp. 230-237.https://doi.org/10.1145/312624.312682
 

Herlocker, J.L., Konstan, J.A., Terveen, L.G. and Riedl, J.T. (2004), “Evaluating collaborative filtering recommender systems”, ACM Transactions on Information Systems (Systems), Vol. 22 No. 1, pp. 5-53.

 

Huang, C.G., Yin, J., Wang, J., Liu, Y.B. and Wang, J.H. (2010), “Uncertain neighbors’collaborative filtering recommendation algorithm”, Chinese Journal of Computers, Vol. 33 No. 8, pp. 1369-1377.

 

Jeong, B., Lee, J. and Cho, H. (2010), “Improving memory-based collaborative filtering via similarity updating and prediction modulation”, Information Sciences, Vol. 180 No. 5, pp. 602-612.

 

Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R. and Riedl, J. (1997), “GroupLens: applying collaborative filtering to Usenet news”, Communications of the Acm, Vol. 40 No. 3, pp. 77-87.

 

Ortega, F., SáNchez, J.L., Bobadilla, J. and GutiéRrez, A. (2013), “Improving collaborative filtering-based recommender systems results using Pareto dominance”, Information Sciences, Vol. 239, pp. 50-61.

 

Papagelis, M., Plexousakis, D. and Kutsuras, T. (2005), “Alleviating the sparsity problem of collaborative filtering using trust inferences”, Trust Management, pp. 125-140.

 

Pazzani, M. and Billsus, D. (1997), “Learning and revising user profiles: the identification of interesting web sites”, Machine Learning, Vol. 27, pp. 313-331.

 
Sarwar, B.M., Karypis, G., Konstan, J. and Riedl, J. (2002), “In-cremental SVD-based algorithms for highly scaleable recommender systems”, Proceeding of the 5th International Conference on Computer and Information Technology, Dhaka.
 

Serrano-Guerrero, J., Herrera-Viedma, E., Olivas, J.A., Cerezo, A. and Romero, F.P. (2011), “A google wave-based fuzzy recommender system to disseminate information in University Digital Libraries 2.0”, Information Sciences, Vol. 181 No. 9, pp. 1503-1516.

 
Zhang, J., Lin, Z., Xiao, B. and Zhang, C. (2009), “An optimized item-based collaborative filtering recommendation algorithm”, IEEE International Conference on Network Infrastructure and Digital Content, IC-NIDC, IEEE, pp. 414-418.
International Journal of Crowd Science
Pages 186-196
Cite this article:
Wang Y, Liang B, Ji W, et al. An improved algorithm for personalized recommendation on MOOCs. International Journal of Crowd Science, 2017, 1(3): 186-196. https://doi.org/10.1108/IJCS-08-2017-0021

797

Views

31

Downloads

9

Crossref

13

Scopus

Altmetrics

Received: 22 August 2017
Accepted: 09 September 2017
Published: 04 September 2017
© The author(s)

Yuqin Wang, Bing Liang, Wen Ji, Shiwei Wang and Yiqiang Chen. Published in International Journal of Crowd Science. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) licence. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this licence may be seen at http://creativecommons.org/licences/by/4.0/legalcode

Return