Abstract
Vehicular Delay Tolerant Networks (DTN) use moving vehicles to sample and relay sensory data for urban areas, making it a promising low-cost solution for the urban sensing and infotainment applications. However, routing in the DTN in real vehicle fleet is a great challenge due to uneven and fluctuant node density caused by vehicle mobility patterns. Moreover, the high vehicle density in urban areas makes the wireless channel capacity an impactful factor to network performance. In this paper, we propose a local capacity constrained density adaptive routing algorithm for large scale vehicular DTN in urban areas which targets to increase the packet delivery ratio within deadline, namely Density Adaptive routing With Node deadline awareness (DAWN). DAWN enables the mobile nodes awareness of their neighbor density, to which the nodes’ transmission manners are adapted so as to better utilize the limited capacity and increase the data delivery probability within delay constraint based only on local information. Through simulations on Manhattan Grid Mobility Model and the real GPS traces of 4960 taxi cabs for 30 days in the Beijing city, DAWN is demonstrated to outperform other classical DTN routing schemes in performance of delivery ratio and coverage within delay constraint. These simulations suggest that DAWN is practically useful for the vehicular DTN in urban areas.