AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

ACTPred: Activity Prediction in Mobile Social Networks

School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China. The work was done when Jibing Gong was visiting Tsinghua University
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China.
University of Glasgow in Singapore, Singapore.
Show Author Information

Abstract

A current trend for online social networks is to turn mobile. Mobile social networks directly reflect our real social life, and therefore are an important source to analyze and understand the underlying dynamics of human behaviors (activities). In this paper, we study the problem of activity prediction in mobile social networks. We present a series of observations in two real mobile social networks and then propose a method, ACTPred, based on a dynamic factor-graph model for modeling and predicting users’ activities. An approximate algorithm based on mean fields is presented to efficiently learn the proposed method. We deploy a real system to collect users’ mobility behaviors and validate the proposed method on two collected mobile datasets. Experimental results show that the proposed ACTPred model can achieve better performance than baseline methods.

References

[1]
M. Granovetter, The strength of weak ties, American Journal of Sociology, vol. 78, no. 6, pp. 1360-1380, 1973.
[2]
D. Krackhardt, The strength of strong ties: The importance of philos in networks and organization, in Networks and Organizations, N. Nohria and R. G. Eccles, Eds. Cambridge, USA: Harvard Business School Press, 1992, pp. 216-239.
[3]
S. Abdullah, N. D. Lane, and T. Choudhury, Towards population scale activity recognition: A framework for handling data diversity, in Proc. AAAI’12, Toronto, Canada, 2012, pp. 851-857.
[4]
J. Yin, Q. Yang, D. Shen, and Z. N. Li, Activity recognition via user-trace segmentation, ACM Transactions on Sensor Networks, vol. 4, no. 4, pp. 19-34, 2008.
[5]
D. H. Hu and Q. Yang, Cigar: Concurrent and interleaving goal and activity recognition, in Proc. AAAI’08, Chicago, USA, 2008, pp. 1363-1368.
[6]
J. R. Kwapisz, G. M. Weiss, and S. A. Moore, Activity recognition using cell phone accelerometers, SIGKDD Explor. Newsl., vol. 12, no. 2, pp. 74-82, Mar. 2011.
[7]
E. Kim, S. Helal, and D. J. Cook, Human activity recognition and pattern discovery, IEEE Pervasive Computing, vol. 9, no. 1, pp. 48-53, Jan.- Mar. 2010.
[8]
Y. M. Zhang, Y. F. Zhang, E. Swears, N. Larios, Z. H. Wang, and Q. Ji, Modeling temporal interactions with interval temporal bayesian networks for complex activity recognition, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 10, pp. 2468-2483, Oct. 2013.
[9]
J. H. Fowler and N. A. Christakis, Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study, British Medical Journal, vol. 337, no. a2338, pp. 1-9, Dec. 2008.
[10]
J. T. Cacioppo, J. H. Fowler, and N. A. Christakis, Alone in the crowd: The structure and spread of loneliness in a large social network, Journal of Personality and Social Psychology, vol. 97, no. 6, pp. 977-991, Dec. 2009.
[11]
J. Tang, Y. Zhang, J. M. Sun, J. H. Rao, W. J. Yu, Y. R. Chen, and A. C. M. Fong, Quantitative study of individual emotional states in social networks, IEEE Trans. Affe. Comp., vol. 3, no. 2, pp. 132-144, April-June 2012.
[12]
J. Jia, S. Wu, X. H. Wang, P. Y. Hu, L. H. Cai, and J. Tang, Can we understand van Gogh’s mood? Learning to infer affects from images in social networks, in Proc. ACM MM’13, Barcelona, Spain, 2013, pp. 857-860.
[13]
Y. Yang, J. Jia, S. M. Zhang, B. Y. Wu, Q. C. Chen, J. Z. Li, C. X. Xing, and J. Tang, How do your friends on social media disclose your emotions? in Proc. AAAI’14, Quebéc, Canada, 2014, pp. 1-7.
[14]
D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, Information diffusion through blogspace, in Proc. WWW’04, New York, USA, 2004, pp. 491-501.
[15]
J. Kleinberg, Temporal dynamics of on-line information streams, in Data Stream Managemnt: Processing High-Speed Data. New York, USA: Springer, 2005.
[16]
J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, Microscopic evolution of social networks, in Proc. KDD’08, Las Vegas, USA, 2008, pp. 462-470.
[17]
P. Sarkar and A. W. Moore, Dynamic social network analysis using latent space models, ACM SIGKDD Explorations Newsletter, vol. 7, no. 2, pp. 31-40, Dec. 2005.
[18]
J. Scripps, P. N. Tan, and A. H. Esfahanian, Measuring the effects of preprocessing decisions and network forces in dynamic network analysis, in Proc. KDD’09, Paris, France, 2009, pp. 747-756.
[19]
A. Anagnostopoulos, R. Kumar, and M. Mahdian, Influence and correlation in social networks, in Proc. KDD’08, Las Vegas, USA, 2008, pp. 7-15.
[20]
D. Kempe, J. Kleinberg, and É. Tardos, Maximizing the spread of influence through a social network, in Proc. KDD’03, Washington, DC, USA, 2003, pp. 137-146.
[21]
J. Tang, J. M. Sun, C. Wang, and Z. Yang, Social influence analysis in large-scale networks, in Proc. KDD’09, Paris, France, 2009, pp. 807-816.
[22]
J. Tang, S. Wu, and J. M. Sun, Confluence: Conformity influence in large social networks, in Proc. KDD’13, Chicago, IL, USA, 2013, pp. 347-355.
[23]
J. Zhang, J. Tang, H. L. Zhuang, C. W. K. Leung, and J. Z. Li, Role-aware conformity influence modeling and analysis in social networks, in Proc. AAAI’14, Quebéc, Canada, 2014, pp. 1-7.
[24]
D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri, Feedback effects between similarity and social influence in online communities, in Proc. KDD’08, Las Vegas, USA, 2008, pp. 160-168.
[25]
Y. Zhang, J. Tang, J. M. Sun, Y. R. Chen, and J. H. Rao, Moodcast: Emotion prediction via dynamic continuous factor graph model, in Proc. ICDM’10, Sydney, Australia, 2010, pp. 1193-1198.
[26]
E. P. Xing, M. I. Jordan, and S. Russell, A generalized mean field algorithm for variational inference in exponential families, in Proc. UAI’03, Acapulco, Mexico, 2003, pp. 583-591.
[27]
J. Neville and D. Jensen, Iterative classification in relational data, in Proc. AAAI’00, Austin, USA, 2000, pp. 13-20.
[28]
X. J. Zhu and J. Lafferty, Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning, in Proc. ICML’05, Bonn, Germany, 2005, pp. 1052-1059.
[29]
M. S. Ryoo, Human activity prediction: Early recognition of ongoing activities from streaming videos, in Proc. ICCV’11, Barcelona, Spain, 2011, pp. 1036-1043.
[30]
W. G. Choi, K. Shahid, and S. Savarese, Learning context for collective activity recognition, in Proc. CVPR’11, Colorado Springs, USA, 2011, pp. 3273-3280.
[31]
D. Riboni and C. Bettini, Cosar: Hybrid reasoning for context-aware activity recognition, Personal and Ubiquitous Computing, vol. 15, no. 3, pp. 271-289, Mar. 2011.
[32]
X. L. Shi, J. Zhu, R. Cai, and L. Zhang, User grouping behavior in online forums, in Proc. KDD’09, Paris, France, 2009, pp. 777-786.
[33]
L. Tang and H. Liu, Relational learning via latent social dimensions, in Proc. KDD’09, Paris, France, 2009, pp. 817-826.
[34]
L. Backstrom, R. Kumar, C. Marlow, J. Novak, and A. Tomkins, Preferential behavior in online groups, in Proc. WSDM’08, Stanford, CA, USA, 2008, pp. 117-128.
[35]
N. Eagle, A.S. Pentland, and D. Lazer, Inferring social network structure using mobile phone data, PNAS, vol. 106, no. 36, pp. 1-24, 2009.
[36]
C. H. Tan, J. Tang, J. M. Sun, Q. Lin, and F. J. Wang, Social action tracking via noise tolerant time-varying factor graphs, in Proc. KDD’10, Washington, DC USA, 2010, pp. 1049-1058.
[37]
J. N. Rosenquist, J. Murabito, J. H. Fowler, and N. A. Christakis, The spread of alcohol consumption behavior in a large social network, Annals of Internal Medicine, vol. 152, no. 7, pp. 426-433, 2010.
[38]
J. H. Fowler and N. A. Christaki, Cooperative behavior cascades in human social networks, PNAS, vol. 107, no. 12, pp. 1-52, Mar. 2010.
[39]
G. Kossinets and D. J. Watts, Empirical analysis of an evolving social network, Science, vol. 311, no. 5757, pp. 88-90, Jan. 2006.
[40]
J. P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, and A. L. Barabasi, Structure and tie strengths in mobile communication networks, PNAS, vol. 104, no. 18, pp. 7332-7336, 2006.
[41]
A. Ahmed and E. P. Xing, Recovering time-varying networks of dependencies in social and biological studies, PNAS, vol. 106, no. 29, pp. 11878-11883, 2009.
[42]
T. La Fond and J. Neville, Randomization tests for distinguishing social influence and homophily effects, in Proc. WWW’10, Raleigh, USA, 2010, pp. 601-610.
[43]
M. Gomez-Rodriguez, J. Leskovec, and A. Krause, Inferring networks of diffusion and influence, in Proc. KDD’10, Washington, DC, USA, 2010, pp. 1019-1028.
[44]
Y. Z. Sun and J. W. Han, Meta-path-based search and mining in heterogeneous information networks, Tsinghua Science and Technology, vol. 18, no. 4, pp. 329-338, Aug. 2013.
Tsinghua Science and Technology
Pages 265-274
Cite this article:
Gong J, Tang J, Fong ACM. ACTPred: Activity Prediction in Mobile Social Networks. Tsinghua Science and Technology, 2014, 19(3): 265-274. https://doi.org/10.1109/TST.2014.6838197

566

Views

13

Downloads

11

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 19 May 2014
Accepted: 20 May 2014
Published: 18 June 2014
© The author(s) 2014
Return