AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Analysis of Allele Specific Expression - A Survey

Feng Gu( )Xue Wang
Department of Computer Science, The College of Staten Island, The City University of New York, Staten Island, NY 10314, USA.
Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

† Both authors contribute equally to the work.

Show Author Information

Abstract

Allele specific expression is essential for cellular programming and development and the diversity of cellular phenotypes. Traditional analysis methods utilize RNA and depend on single nucleotide polymorphisms, thus to suffer from limited amount of materials for analysis. The rapid development of next-generation sequencing technologies provides more comprehensive and powerful approaches to analyze the genomic, epigenetic, and transcriptomic data, and further to detect and measure allele specific expressions. It will potentially enhance the understanding of the allele specific expressions, their complexities, and the effect on biological processes. In this paper, we extensively review the state-of-art enabling technologies and tools to analyze, detect, and measure allele specific expressions, compare their features, and point out the future trend of the methods.

References

[1]
Ferguson-Smith A. C. and Surani M. A., Imprinting and the epigenetic asymmetry between parental genomes, Science, vol. 293, no. 5532, pp. 1086-1089, 2001.
[2]
Delaval K. and Feil R., Epigenetic reguation of mammalian genomic imprinting, Current Opinion in Genetics & Development, vol. 14, no. 2, pp. 188-195, 2004.
[3]
Feil R. and Berger F., Convergent evolution of genomic imprinting in plants and mammals, Trends in Genetics, vol. 23, no. 4, pp. 192-199, 2007.
[4]
Gimelbrant A., Hutchinson J. N., Thompson, B. R., and Chess A., Widespread monoallelic expression on human autosomes, Science, vol. 318, no. 5853, pp. 1136-1140, 2007.
[5]
Takizawa T., Gudla, P. R., Guo L., Lockett S., and Misteli T., Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP, Genes & Development, vol. 22, no. 4, pp. 489-498, 2008.
[6]
Guo L., Hu-Li J., and Paul W. E., Probabilistic regulation in TH2 cells accounts for monoallelic expression of IL-4 and IL-13, Immunity, vol. 23, no. 1, pp. 89-99, 2005.
[7]
Crowley J. J., Zhabotynsky V., Sun W., Huang S., Pakatci I. K., Kim Y., Wang J. R., Morgan A. P., Calaway J. D., Aylor D. L., et al., Analyses of allele-specific gene expression in highly divergent mouse crosses identifies pervasive allelic imbalance, Nature Genetics, vol. 47, pp. 353-360, 2015.
[8]
Hasin-Brumshtein Y., Hormozdiari F., Martin L., van Nas A., Eskin E., Lusis A. J., and Drake T. A., Allele-specific expression and eQTL analysis in mouse adipose tissue, BMC Genomics, vol. 15, no. 471, pp. 1-13, 2014.
[9]
Singer-Sam J. and Gao C., Quantitative RT-PCR-based analysis of allele-specific gene expression, in Genomic Imprinting Methods in Molecular Biology, vol. 181, Ward A., Ed. New Jersey, USA: Humana Press, 2002, pp. 145-152.
[10]
Paracchini S., Monaco A. P., and Knight J. C., An allele-specific gene expression assay to test the functional basis of genetic associations, Journal of Visualized Experiments, vol. 45, p. 2279, 2010.
[11]
Mullis K., Faloona F., Scharf S., Saiki R., Horn G., and Erlich H., Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction, in Proceedings Cold Spring Harbor Symposia on Quantitative Biology, 1986, pp. 263-273.
[12]
Bartlett J. M. S. and Stirling D., A short history of the polymerase chain reaction, in Methods in Molecular Biology PRC Protocols, 2nd ed., vol. 226. New Jersey, USA: Humana Press, 2003, pp. 3-6.
[13]
Kwok P. Y., and Chen X., Detection of single nucleotide polymorphisms, Current Issues Mol. Biol., vol. 5, no. 2, pp. 43-60, Apr. 2003.
[14]
Mirasena S., Shimbhu D., Sanguansermsri M., and Sanguansermsri T., Detection of β-thalassemia mutations using a multiplex amplification refractory mutation system assay, Hemoglobin., vol. 32, no. 4, pp. 403-409, 2008.
[15]
Sapkota B. R., Ranjit C., Neupane K. D., and Macdonald M., Development and evaluation of a novel multiple-primer PCR amplification refractory mutation system for the rapid detection of mutations conferring rifampicin resistance in codon 425 of the rpoB gene of Mycobacterium leprae, Journal of Medical Microbiology, vol. 57, no. 2, pp. 179-184, 2008.
[16]
Hirotsu N., Murakami N., Kashiwagi T., Ujiie K., and Ishimaru K., Protocol: A simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species, Plant Methods, vol. 6, no. 12, pp. 1-10, 2010.
[17]
Teh L. K., Lee W. L., Amir J., Salleh M. Z., and Ismail R., Single step PCR for detection of allelic variation of MDR1 gene (P-glycoprotein) among three ethnic groups in Malaysia, Journal of Clinical Pharmacy and Therapeutics, vol. 32, no. 3, pp. 313-319, 2007.
[18]
Rhodes C. H., Honsinger C., Porter D. M., and Sorenson G. D., Analysis of the allele-specific PCR method for the detection of neoplastic disease, Diagnostic Molecular Pathology, vol. 6, no. 1, pp. 49-57, 1997.
[19]
Liu J., Huang S., Sun M., Liu S., Liu Y., Wang W., Zhang X., Wang H., and Hua W., An improved allele-specific PCR primer design method for SNP marker analysis and its application, Plant Methods, vol. 8, no. 34, pp. 1-9, 2012.
[20]
Hayashi K., Hashimoto N., Daigen M., and Ashikawa I., Development of PCR-based SNM markers for rice blast resistance genes at the Piz locus, Theoretical and Applied Genetics, vol. 108, no. 7, pp. 1212-1220, 2004.
[21]
Myakishev M. V., Khripin Y., Hu S., and Hamer D. H., High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers, Genome Research, vol. 11, no. 1, pp. 163-169, 2001.
[22]
Thorvaldsen J. L. and Bartolomei M. S., Ribonuclease Protection, in Genomic Imprinting Methods in Molecular Biology, vol. 181, Ward A., Ed. New Jersey, USA: Humana Press, 2002, pp. 133-144.
[23]
Bartolomei M. S., Zemel S., and Tilghman S. M., Parental imprinting of the mouse H19 gene, Nature, vol. 351, no. 6322, pp. 153-155, 1991.
[24]
Gunderson K. L., Steemers F. J., Mendoza L. G., and Chee M. S., A genome-wide scalable SNP genotyping assay using microarray technology, Nature Genetics, vol. 37, no. 5, pp. 549-554, 2005.
[25]
Liu R., Maia A. T., Russuel R., Caldas C., Ponder B. A., and Ritchie M. E., Allele-specific expression analysis methods for high-density SNP microarray data, Bioinformatics, vol. 28, no. 8, pp. 1102-1108, 2012.
[26]
Bjornsson H. T., Albert T. J., Ladd-Acosta C. M., Green R. D., Rongione M. A., Middle C. M., Irizarry R. A., Broman K. W., and Feinberg A. P., SNP-specific array-based allele-specific expression analysis, Genome Research, vol. 18, no. 5, pp. 771-779, 2008.
[27]
Daelemans C., Ritchie M. E., Smits G., Abu-Amero S., Sudbery I. M., Forrest M. S., Capino S., Clark T. G., Stanier P., Kwiatkowski D., et al., High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta, BMC Genetics, vol. 11, no. 1, p. 2, 2010.
[28]
Ge B., Pokholok D. K., Kwan T., Grundberg E., Morcos L., Verlaan D. J., Le J., Koka V., Lam K. C., Gagne V., et al., Global patterns of cis variation in human cells revealed by high-density allelic expression analysis, Natural Genetics, vol. 44, no. 11, pp. 1216-1222, 2009.
[29]
Serre D., Gurd S., Ge B., Sladek R., Sinnett Dr., Harmsen E., Bibikova M., Chudin E., Barker D. L., Dickinson T., et al., Differential allelic expression in the human genome: A robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression, PLoS Genetics, vol. 4, no. 2, p. e1000006, 2008.
[30]
Tan A. C., Fan J.-B., Karikari C., Bibikova M., Garcia E. W., Zhou L., Barker D., Serre D., Feldmann G., Hruban R. H., et al., Allele-specific expression in the germine of patients with familial pancreatic cancer: An unbiased approach to cancer gene discovery, Cancer Biology & Therapy, vol. 7, no. 1, pp. 137-146, 2008.
[31]
Liu Z., Yang J., Xu H., Li C., Wang Z., Li Y., Dong X., and Li Y., Comparing computational methods for identification of allele-specific expression based on next generation sequencing data, Genetic Epidemiology, vol. 38, no. 7, pp. 591-598, 2014.
[32]
Mayba O., Gilbert H. N., Liu J., Haverty P. M., Jhunjhunwala S., Jiang Z., Watanabe C., and Zhang Z., MBASED: Allele-specific expression detection in cancer tissues and cell lines, Genome Biology, vol. 15, no. 405, pp. 1-21, 2014.
[33]
Lo H. S., Wang Z., Hu Y., Yang H. H., Gere S., Buetow K. H., and Lee M. P., Allelic variation in gene expression is common in the human genome, Genome Research, vol. 13, no. 8, pp. 1885-1862, 2003.
[34]
Rozowsky J., Abyzov A., Wang J., Alves P., Raha D., Harmanci A., Leng J., Bjornson R., Kong Y., Kitabayashi N., et al., AlleleSeq: Analysis of allele-specific expression and binding in a network framework, Molecular Systems Biology, vol. 7, no. 522, pp. 1-15, 2011.
[35]
Skelly D. A., Johansson M., Madeoy J., Wakefield J., and Akey J. M., A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data, Genome Research, vol. 21, vo. 10, pp. 1728-1737, 2011.
[36]
Wei D., Jiang Q., Wei Y., and Wang S., A novel hierarchical clustering algorithm for gene sequences, BMC Bioinformatics, vol. 13, no. 174, pp. 1-15, 2012.
[37]
Pandey R. V., Franssen S. U., Futschik A., and Schlötterer C., Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data, Molecular Ecology Resources, vol. 13, no. 4, pp. 740-745, 2013.
[38]
Romanel A., Lago S., Prandi D., Sboner A., and Demichelis F., ASEQ: Fast allele-specific studies from next generation sequencing data, BMC Medical Genomics, vol. 8, no. 9, pp. 1-12, 2015.
[39]
McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S., Daly M., et al., The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data, Genome Research, vol. 20, no. 9, pp. 1297-1303, 2010.
[40]
McManus C. J., Coolon J. D., Duff M. O., Eipper-Mains J., Graveley B. R., and Wittkopp P. J., Regulatory divergence in drosophila revealed by mRNA-seq, Genome Research, vol. 20, no. 6, pp. 816-825, 2010.
[41]
Bell G. D., Kane N. C., Rieseberg L. H., and Adams K. L,, RNA-seq analysis of allele-specific expression, hybrid effects, and regulatory divergence in hybrids compared with their parents from natural populations, Genome Biology and Evolution, vo. 5, no. 7, pp. 1309-1323, 2013.
[42]
Wei X. and Wang X., A computational workflow to identify allele-specific expression and epigenetic modification in maize, Genomics Proteomics Bioinformatics, vol. 11, no. 4, pp. 247-252, 2013.
[43]
Fu C.-P., Jojic V., and McMillan L., An alignment-free regression approach for estimating allele-specific expression using RNA-seq data, Lecture Notes in Computer Science, vol. 8394, pp. 69-84, 2014.
[44]
Turro E., Su S. Y., Goncalves A., Coin L. J., Richardson S., and Lewin A., Haplotype and isoform specific expression estimation using muti-mapping RNA-seq reads, Genome Biology, vol. 12, no. R13, pp. 1-15, 2011.
[45]
Graze R. M., Novelo L. L., Amin V., Fear J. M., Casella G., Nuzhdin S. V., and Mclntyre L. M., Allelic imbalance in drosophila hybrid heads: Exons, isoforms, and evolution, Molecular Biology and Evolution, vol. 29, no. 6, pp. 1521-1532, 2012.
[46]
Leon-Novelo L. G., Mcintyre L. M., Fear J. M., and Graze R. M., A flexible Bayesian method for detecting allelic imbalance in RNA-seq data, BMC Genomics, vol. 15, no. 920, pp. 1-11, 2014.
[47]
Skelly D. A., Johansson M., Teare M. D., Heighway J., and Koref M. F. S., An expectation maximization algorithm for the analysis of allelic expression imbalance, American Journal of Human Genetics, vol. 79, no. 3, pp. 539-543, 2006.
[48]
Jeong S., Hahn Y., Rong Q., and Pfeifer K., Accurate quantitation of allele-specific expression patterns by analysis of DNA melting, Genomes Research, vol. 17, no. 7, pp. 1093-1100, 2007.
[49]
Degner J. F., Marioni J. C., Pai A. A., Pickrell J. K., Nkadori E., Gilad Y., and Pritchard J. K., Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data, Bioinformatics, vol. 25, no. 24, pp. 3207-3212, 2009.
[50]
Zhang K., Li J. B., Gao Y., Egli D., Xie B., Deng J., Li Z., Lee J.-H., Aach J., Leproust E., et al., Digital RNA allelotyping reveals tissue-specific and allele-specific gene expression in human, Nature Methods, vol. 6, no. 8, pp 613-618, 2009.
[51]
Main B. J., Bickel R. D., McIntyre L. M., Graze R. M., Calabrese P. P., and Nuzhdin S. V., Allele-specific expression assays using Solexa, BMC Genomics, vol. 10, no. 422, pp. 1-9, 2009.
[52]
Montgomery S. B., Sammeth M., Gutierrez-Arcelus M., Lach R. P., Ingle C., Nisbett J., Guigo R., and Dermitzakis E. T., Transcriptome genetics using second generation sequencing in a Caucasian population, Nature, vol. 464, pp. 773-777, 2010.
[53]
Soderlund C. A., Nelson W. M., and Goff S. A., Allele workbench: Transcriptome pipeline and interactive graphics for allele-specific expression, PLoS ONE, vol. 9, no. 12, p. e115740, 2014.
[54]
Schaart J. G., Mehli L., and Schouten H. J., Quantification of allele-specific expression of a gene encoding strawberry polygalacturonase-inhibiting protein (PGIP) using pyrosequencing, The Plant Journal, vol. 41, no. 3, pp. 493-500, 2005.
[55]
Bittel D. C., Kibiryeva N., Talebizadeh Z., Driscoll D. J., Butler M. G., Microarray analysis of gene/transcript expression in Angelman syndrome: Deletion versus UPD, Genomics, vol. 85, no. 1, pp. 85-91, 2005.
[56]
MacEachern S., Muir W. M., Crosby S., and Cheng H. H., Genome-wide identification of allele-specific expression (ASE) in response to Marek’s disease virus infection using next generation sequencing, BMC Proceedings, vol. 5, no. S14, pp. 1-3, 2011.
[57]
Chen Y., Li M., Islam I., You L., Wang Y., Li Z., Ling L., Zeng B., Xu J., Huang Y., and Tan A., Allelic-specific expression in relation to Bombyx mori resistance to Bo toxin, Insect Biochemistry and Molecular Biology, vol. 54, pp. 53-60, 2014.
[58]
M Springer N. and Stupar R. M., Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in bybrid maize, Plant Cell, vol. 19, no. 8, pp. 2391-2402, 2007.
[59]
Satya R. V., Zavaljevski N., and Reifman J., A new strategy to reduce allelic bias in RNA-Seq readmapping, Nucleic Acids Research, vol. 40, no. 16, p. e127, 2012.
[60]
Yuan S. and Qin Z., Read-mapping using personalized diploid reference genome for RNA sequencing data reduced bias for detecting allele-specific expression, in IEEE International Conference on Bioinformatics and Biomedicine Workshops, Philadelphia, USA, 2012, pp. 718-724.
[61]
Stevenson K. R., Coolon J. D., and Wittkopp P. J., Sources of bias in measures of allele-specific expression derived from RNA-seq data aligned to a single reference genome, BMC Genomics, vol. 14, no. 536, pp. 1-13, 2013.
[62]
Castel S. E., Moonshine A. L., Mohammadi P., Banks E., and Lappalainen T., Tools and best practices for allelic expression analysis, http://biorxiv.org/content/early/2015/03/05/016097, 2015.
[63]
Palacios R., Gazave E., Goni J., Piedrafita G., Fernando O., Navarro A., and Villoslada P., Allele-specific gene expression is widespread across the genome and biological processes, PLoS ONE, vol. 4, p. e4150, 2009.
[64]
Pastinen T., Genome-wide allele-specific analysis: insights into regulatory variation, Nature Reviews Genetics, vol. 11, no. 8, pp. 533-538, 2010.
[65]
Li G., Bahn J. H., Lee J. H., Peng G.. Chen Z., Nelson S. F., and Xiao X., Identification of allele-specific alternative mRNA processing via transcriptome sequencing, Nucleic Acids Research, vol. 40, no. 13, p. e104, 2012.
[66]
DerSimonian R. and Laird N., Meta-analysis in clinical trials, Controlled Clinical Trials, vol. 7, no. 3, pp. 177-188, 1986.
[67]
Munger S. C., Raghupathy N., Choi K,, Simons A. K., Gatti D. M., Hinerfeld D. A., Svenson K. L., Keller M. P., Attie A. D., Hibbs M. A., et al., RNA-Seq alignment to individualized genomes improves transcript abundance estimates in multiparent populations, Genetics, vol. 198, no. 1, pp. 59-73, 2014.
[68]
Younesy H., Moller T., Heravi-Moussavi A., Cheng J. B., Costello J. F., Lorincz M. C., Karimi M. M., and Jones S. J. M., ALEA: A toolbox for allele-specific epigenomics analysis, Bioinformatics, vol. 30, no. 8, pp. 1172-1174, 2013.
[69]
van de Geijn B., McVicker G., Gilad Y., and Pritchard J. K., WASP: Allele-specific software for robust discovery of molecular quantitative trait loci, http://biorxiv.org/content/early/2014/11/07/011221, 2014.
[70]
Wangkumhang P., Chaichoompu K., Ngamphiw C., Ruangrit U., Chanprasert J., Assawamakin A., and Tongsima S., WASP: A web-based allele-specific PCR assay designing tool for detecting SNPs and mutations, BMC Genomics, vol. 8, no. 275, pp. 1-9, 2007.
[72]
Sun W. and Zhabotynsky V., asSeq: A set of tools for the study of allele-specific RNA-seq data, http:// www.bios.unc.edu/∼weisun/software/asSeq.pdf, 2015.
[73]
Roberts A. and Pachter L., Streaming fragment assignment for real-time analysis of sequencing experiments, Nature Methods, vol. 10, pp. 71-73, 2012.
[74]
Wei Y., Li X., Wang Q., and Ji H., iASeq: Integrative analysis of allele-specificity of pertain-DNA interactions in multiple ChIP-seq datasets, BMC Genomics, vol. 13, no. 681, pp. 1-19, 2012.
[75]
Rivas M. A., Pirinen M., Neville M. J., Gaulton K. J., Moutsianas L., Lindgren C. M., Karpe F., McCarthy M. I., and Donnelly P., Assessing association between protein truncating variants and quantitative traits, Bioinformatics, vol. 29, no. 19, pp. 2419-2426, 2013.
[76]
Kofler R., Torres T. T., Lelley T., and Schlotterer C., PanGEA: Identification of allele specific gene expression using the 454 technology, BMC Bioinformatics, vol. 10, no. 143, pp. 1-10, 2009.
[77]
Harvey C. T., Moyerbralean G. A., Davis G. O., Wen X., Luca F., and P.-R. R., QuASAR: Quantitative allele-specific analysis of reads, Bioinformatics, vol. 31, no. 8, pp. 1235-1242, 2015.
[78]
AlleleSeq on Biowulf, http://biowulf.nih.gov/apps/ AlleleSeq.html, 2015.
Tsinghua Science and Technology
Pages 513-529
Cite this article:
Gu F, Wang X. Analysis of Allele Specific Expression - A Survey. Tsinghua Science and Technology, 2015, 20(5): 513-529. https://doi.org/10.1109/TST.2015.7297750

531

Views

25

Downloads

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 06 July 2015
Accepted: 06 August 2015
Published: 13 October 2015
The author(s) 2015
Return