PDF (6.7 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Frontiers and trends in the research on carbonate sedimentology and reservoir geology

Jingao ZHOU1,2Zhehang XU1Shiwei HUAN3()Wenzheng LI1,2Junmao DUAN1Yongjin ZHU1,2Jianfeng ZHENG1,2Dongxu WU1,2Shaoying CHANG1,2
Hangzhou Research Institute of Geology, PetroChina, Hangzhou, Zhejiang 310023, China
Key Laboratory of Carbonate Reservoirs, CNPC, Hangzhou, Zhejiang 310023, China
Exploration Department, PetroChina Daqing Oilfield Company, Daqing, Heilongjiang 163453, China
Show Author Information

Abstract

Carbonate rocks typically contain abundant hydrocarbon resources, which establish them as a crucial target for current and future hydrocarbon exploration and exploitation. To determine the frontiers and trends of research on carbonate sedimentology and reservoir geology, we perform a literature review on carbonate rocks. The three advances in carbonate sedimentology are summarized here. (1) An improved classification of carbonate factories in five types is developed based on the determination of the genetic relationships between producers, environments, and products. These provide a novel philosophy for reconstructing carbonate sedimentary environments, localizing source rocks and reservoirs, and investigating the source-to-sink sedimentary system of carbonate rocks. (2) A systematic elucidation of the mechanisms behind carbon sequestration and oxygen generation by microbes, carbon sequestration and rock formation by microbes, microbially induced carbonate fabrics, and microbial involvement in sedimentation and evolution. These mechanisms function as a new theoretical basis for reconstructing the carbon cycling, atmospheric oxidation, biological evolution, and carbon sequestration in geological history. (3) The basin-scale lithofacies paleogeographic reconstruction, and the development of unique sedimentary patterns. These allow for the expansion of hydrocarbon exploration toward both the interior carbonate platforms and deep to ultradeep ancient carbonate rocks. Recent advances in the understanding of carbonate reservoir geology include: (1) Innovations made in the genetic mechanisms of dolomites, with three novel models being established: microbially induced dolomitization, dissolution/precipitation-driven dolomitization, and high silica concentration-driven dolomitization, being of new theoretical models for understanding dolomization; (2) The identification of sedimentary facies, dolomitization, dissolution, and structural modification as dominant factors controlling reservoir formation, and the determination of the formation and distribution patterns of microbialite-dominated reservoirs and fault-controlled reservoirs. These assist in expediting breakthroughs in oil and gas exploration in carbonate rocks. The advances in experimental techniques for carbonate rocks include the establishment of uranium and lead (U-Pb) isotopic dating, and clumped, Mg, and S isotope tests for carbonate minerals. These advances provide new technologies and methods for reconstructing the evolution of reservoir porosity, the process of reservoir formation, and the evolution of hydrocarbon accumulation. Overall, it can be concluded that physical simulation, numerical simulation, and artificial intelligence represent the trends of research on carbonate sedimentology, reservoir geology and experimental technology.

CLC number: TE121.3 Document code: A Article ID: 0253-9985(2024)04-0929-25

References

[1]

JIN Zhijun, LONG Shengxiang, ZHOU Yan, et al. A study on the distribution of saline-deposit in southern China[J]. Oil & Gas Geology, 2006, 27(5): 571-583, 593.

[2]

RAN Longhui, CHEN Gengsheng, XU Renfen. Discovery and exploration of Luojiazhai gas field, Sichuan Basin[J]. Marine Origin Petroleum Geology, 2005, 10(1): 43-47.

[3]

MA Yongsheng. Cases of discovery and exploration of marine fields in China(part 6): Puguang Gas Field in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2006, 11(2): 35-40.

[4]

DU Jinhu, ZOU Caineng, XU Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleouplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.

[5]

ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293.

[6]

YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. Great discovery and its significance of exploration for Ordovician ultradeep fault-controlled carbonate reservoirs of Well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 13-23.

[7]

HU Suyun, LI Jianzhong, WANG Tongshan, et al. CNPC oil and gas resource potential and exploration target selection[J]. Petroleum Geology and Experiment, 2020, 42(5): 813-823.

[8]
FOLK R L. Spectral subdivision of limestone types[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 62-84.
[9]
DUNHAM R J. Classification of carbonate rocks according to depositional texture[M]//HAM W E. Classification of Carbonate Rocks—A Symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-121.
[10]

CHOQUETTE P W, PRAY L C. Geologic nomenclature and classification of porosity in sedimentary carbonates[J]. AAPG Bulletin, 1970, 54(2): 207-250.

[11]

LUCIA F J. Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization[J]. AAPG Bulletin, 1995, 79(9): 1275-1300.

[12]

READ J F. Carbonate platform facies models[J]. AAPG Bulletin, 1985, 69(1): 1-21.

[13]
WILSON J L. Summary[M]//WILSON J L. Carbonate Facies in Geologic History. New York: Springer, 1975: 348-379.
[14]

TUCKER M E, WRIGHT V P. Carbonate sedimentology[M]. Oxford: Blackwell Science Ltd, 1990: 1-467.

[15]

SARG J F. The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: A review[J]. Sedimentary Geology, 2001, 140(1/2): 9-34.

[16]

SCHLAGER W. Carbonate sedimentology and sequence stratigraphy[M]. Tulsa: SEPM society for Sedimentary Geology, 2005.

[17]

LUCIA F J. Carbonate reservoir characterization[M]. Berlin: Springer, 1999: 227.

[18]

MOORE C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier, 2001: 444.

[19]

SCHLAGER W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464.

[20]

JAMES N P, REID C M, BONE Y, et al. The macroalgal carbonate factory at a cool-to-warm temperate marine transition, Southern Australia[J]. Sedimentary Geology, 2013, 291: 1-26.

[21]

JAMES N P, MATENAAR J, BONE Y. Cool-water Eocene-Oligocene carbonate sedimentation on a paleobathymetric high, Kangaroo Island, southern Australia[J]. Sedimentary Geology, 2016, 341: 216-231.

[22]

REIJMER J J G. Marine carbonate factories: Review and update[J]. Sedimentology, 2021, 68(5): 1729-1796.

[23]

LI Fei, GONG Qiaolin, BURNE R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354.

[24]

WANG Jiuyuan, TARHAN Lidya G., JACOBSON Andrew D., et al. The evolution of the marine carbonate factory[J]. Nature, 2023, 615(7951): 265-269.

[25]

WALCOT C D. Cambrian geology and palaeontology III No. 2-Precambrian, Algonkian algal flora[J]. Smithson. Miscellan. Collect, 1914, 64: 44-156.

[26]

RIDING R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214.

[27]

SHAPIRO R S. A comment on the systematic confusion of thrombolites[J]. Palaios, 2000, 15(2): 166-169.

[28]

CATLING D C, ZAHNLE K J. The Archean atmosphere[J]. Science Advances, 2020, 6(9): eaax1420.

[29]
LARGE Ross R. Evolution of Earth's Atmosphere[M]//Alderton D, Elias S A. Encyclopedia of Geology(Second Edition). Oxford: Academic Press, 2021: 571-584.
[30]

CHEN Si, ZENG Min, TIAN Jingchun, et al. Microbe-mediated, marine authigenic formation of ooidal chamosite: Insights from upper Ordovician carbonates of the South-Western Yangtze platform(China)[J]. Sedimentology, 2023, 70(5): 1655-1678.

[31]

DIAZ M R, EBERLI G P. Decoding the mechanism of formation in marine ooids: A review[J]. Earth-Science Reviews, 2019, 190: 536-556.

[32]

DIAZ M R, EBERLI G P. Microbial contribution to early marine cementation[J]. Sedimentology, 2022, 69(2): 798-822.

[33]

DIAZ M R, EBERLI G P, WEGER R J. Indigenous microbial communities as catalysts for early marine cements: An in vitro study[J]. The Depositional Record, 2023, 9(3): 437-456.

[34]

XIE Shucheng, YAN Jiaxin, YANG Yi, et al. Coevolution of microorganisms and sedimentary rocks[J]. Acta Sedimentologica Sinica, 2023, 41(6): 1635-1644.

[35]

BURNE R V, MOORE L S. Microbialites; organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.

[36]

HU Anping, SHEN Anjiang, ZHENG Jianfeng, et al. The classification, facies and sedimentary models of microbialites[J]. Marine Origin Petroleum Geology, 2021, 26(1): 1-15.

[37]

WU Yasheng. Classification of biolith(biogenic rocks)[J]. Journal of Palaeogeography(Chinese Edition), 2023, 25(3): 511-523.

[38]

ZHOU Jingao, ZHANG Jianyong, DENG Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31.

[39]

LUO Yao, TAN Xiucheng, ZHAO Dongfang, et al. Sedimentary characteristics of the Ediacaran microbial carbonates and their geological implications: A case study of the Member 4 of Dengying Formation from Wellblock MX8 in central Sichuan Basin[J]. Journal of Palaeogeography, 2022, 24(2): 278-291.

[40]

HU Mingyi, SUN Chunyan, GAO Da. Characteristics of tectoniclithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23.

[41]

ZHENG Jianfeng, HUANG Lili, YUAN Wenfang, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709.

[42]

WU Yasheng, JIANG Hongxia, YU Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5): 737-775.

[43]

HU Anping, SHEN Anjiang, ZHANG Jie, et al. Source-reservoir characteristics of high-frequency cyclic carbonate-evaporite assemblages: A case study of the lower and middle assemblages in the Ordovician Majiagou Formation, Ordos Basin[J]. Oil & Gas Geology, 2022, 43(4): 943-956.

[45]

ZHONG Yong, LI Yalin, ZHANG Xiaobin, et al. Features of extensional structures in pre-Sinian to Cambrian strata, Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5): 498-510.

[46]

LI Zhongquan, LIU Ji, LI Ying, et al. Formation and evolution of Weiyuan-Anyue extension-erosion groove in Sinian system, Sichuan Basin[J]. Petroleum Exploration and Development, 2015, 42(1): 26-33.

[47]

WEI Guoqi, YANG Wei, DU Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35.

[48]

LIU Shu, NING Meng, XIE Gangping. Geological significance of paleo-aulacogen and exploration potential of reef flat gas reservoir in the Western Sichuan Depression[J]. Natural Gas Industry, 2015, 35(7): 17-26.

[49]

YANG Yu, WANG Yigang, WEN Yingchu, et al. The sedimentary facies and the distribution of oolitic reservoir in the Feixianguan Formation, northeastern Sichuan Basin[J]. Natural Gas Exploration and Development, 2001, 24(3): 18-21.

[50]

WANG Yigang, ZHANG Jing, LIU Xinggang, et al. Sedimentary facies of evaporative carbonate platform of the Feixianguan Formation of Lower Triassic in northeastern Sichuan Basin[J]. Journal of Palaeogeography, 2005, 7(3): 357-371.

[51]

CHEN Youzhi, FU Jinhua, YANG Gaoyin, et al. Researches on basin property of Ordos block during Mesoproterozoic Changcheng period[J]. Acta Petrologica Sinica, 2016, 32(3): 856-864.

[52]

GUAN Shuwei, WU Lin, REN Rong, et al. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2017, 38(1): 9-22.

[53]

WANG Kun, WANG Tongshan, WANG Zecheng, et al. Characteristics and hydrocarbon geological conditions of the Changchengian rifts in the southern North China Craton[J]. Acta Petrolei Sinica, 2018, 39(5): 504-517.

[54]

SONG Wenhai. Research on reservoir-formed conditions of largemedium gas fields of Leshan-Longnusi palaeohigh[J]. Natural Gas Industry, 1996, 16(S1): 13-26, 105-106.

[55]

XU Hailong, WEI Guoqi, JIA Chengzao, et al. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4): 406-416.

[56]

HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2): 207-221.

[57]

FU Jinhua, SUN Liuyi, FENG Qianghan, et al. Oil & gas geology and exploration of Lower Paleozoic marine carbonate rocks in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2018: 10.

[58]

IRWIN M L. General theory of epeiric clear water sedimentation[J]. AAPG Bulletin, 1965, 49(4): 445-459.

[59]

BURCHETTE T P, WRIGHT V P. Carbonate ramp depositional systems[J]. Sedimentary Geology, 1992, 79(1/4): 3-57.

[60]

BOSENCE Dan. A genetic classification of carbonate platforms based on their basinal and tectonic settings in the Cenozoic[J]. Sedimentary Geology, 2005, 175(1/4): 49-72.

[61]

EBERLI G P, BETZLER C. Characteristics of modern carbonate contourite drifts[J]. Sedimentology, 2019, 66(4): 1163-1191.

[62]

DIAZ M R, PIGGOT A M, EBERLI G P, et al. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago[J]. Marine Ecology Progress Series, 2013, 485: 9-24.

[63]
AURELL M, BÁDENAS B. Facies architecture of a microbialsiliceous sponge-dominated carbonate platform: The Bajocian of Moscardón(Middle Jurassic, Spain)[M]//BOSENCE D W J, GIBBONS K A, LE HERON D P, et al. Microbial Carbonates in Space and Time: Implications for Global Exploration and Production. London: Geological Society of London, 2015: 155-174.
[64]

PETROVIC A, LÜDMANN T, AFIFI A M, et al. Fragmentation, rafting, and drowning of a carbonate platform margin in a rift-basin setting[J]. Geology, 2023, 51(3): 242-246.

[65]

BETZLER C, LINDHORST S, REIJMER J J G, et al. Carbonate platform drowning caught in the act: The sedimentology of Saya de Malha Bank(Indian Ocean)[J]. Sedimentology, 2023, 70(1): 78-99.

[66]

YAO Genshun, ZHOU Jingao, ZOU Weihong, et al. Characteristics and distribution rule of Lower Cambrian Longwangmiao grain beach in Sichuan basin[J]. Marine Origin Petroleum Geology, 2013, 18(4): 1-8.

[67]

ZHOU Jingao, LIU Xinshe, SHEN Anjiang, et al. The characteristics of tectonic-lithofacies paleogeography of marine petroliferous basins of China[J]. Marine Origin Petroleum Geology, 2019, 24(4): 27-37.

[68]

ZHOU Jingao, YAO Genshun, YANG Guang, et al. Lithofacies palaeogeography and favorable gas exploration zones of Qixia and Maokou Fms in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(4): 8-15.

[69]

YANG Weiqiang, LIU Zheng, CHEN Haoru, et al. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs[J]. Journal of Palaeogeography, 2020, 22(2): 251-265.

[70]

EHRENBERG S N. The etiology of carbonate porosity[J]. AAPG Bulletin, 2022, 106(12): 2351-2386.

[71]

WANG Guangwei. Dolomitization and dolomite pore formation: Insights from experimentally simulated replacement[J]. Acta Sedimentologica Sinica, 2024, 42(2): 632-642.

[72]

LAND L S. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years[J]. Aquatic Geochemistry, 1998, 4(3): 361-368.

[73]

GREGG J M, BISH D L, KACZMAREK S E, et al. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review[J]. Sedimentology, 2015, 62(6): 1749-1769.

[74]

MCKENZIE J A, VASCONCELOS C R. Dolomite mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives[J]. Sedimentology, 2009, 56(1): 205-219.

[75]

LI Mingtao, WIGNALL P B, DAI Xu, et al. Phanerozoic variation in dolomite abundance linked to oceanic anoxia[J]. Geology, 2021, 49(6): 698-702.

[76]

WACEY D, WRIGHT D T, BOYCE A J. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia[J]. Chemical Geology, 2007, 244(1/2): 155-174.

[77]

SÁNCHEZ-ROMÁN M, MCKENZIE J A, DE LUCA REBELLO WAGENER A, et al. Presence of sulfate does not inhibit lowtemperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.

[78]

ROBERTS J A, KENWARD P A, FOWLE D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.

[79]

XU Fan, LIN Changsong, YOU Xuelian, et al. Microbial dolomite in culture experiment and natural environments: Implication for dolomite genesis[J]. Geomicrobiology Journal, 2021, 38(4): 365-374.

[80]

YOU Xuelian, SUN Shu, ZHU Jingquan, et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers, 2011, 18(4): 52-64.

[81]

XU Yangyang, LIU Deng, YU Na, et al. Advance and review on microbial/organogenic dolomite model[J]. Earth Science, 2018, 43(S1): 63-70.

[82]

ZHAO Dongfang, TAN Xiucheng, LUO Bing, et al. A review of microbial dolomite: Advances and challenges[J]. Acta Sedimentologica Sinica, 2022, 40(2): 335-349.

[83]

LIU Deng, CAO Jinpeng, YANG Shanshan, et al. Microbiallymediated formation of Ca-Fe carbonates during dissimilatory ferrihydrite reduction: Implications for the origin of sedimentary ankerite[J]. Science China Earth Sciences, 2024, 54(1): 216-230.

[85]

LIN Xiaoxian, PENG Jun, HOU Zhongjian, et al. Study on characteristics and geneses of algal dolostone of the Upper Sinian Dengying Formation in the Hanyuan-Ebian area of Sichuan Province, China[J]. Acta Sedimentologica Sinica, 2018, 36(1): 57-71.

[86]

KIM J, KIMURA Y, PUCHALA B, et al. Dissolution enables dolomite crystal growth near ambient conditions[J]. Science, 2023, 382(6673): 915-920.

[87]

HASHIM M S, ROSE K G, COHEN H F, et al. Effects of sodium and potassium concentrations on dolomite formation rate, stoichiometry and crystallographic characteristics[J]. Sedimentology, 2023, 70(7): 2355-2370.

[88]

FANG Yihang, HOBBS F, YANG Yiping, et al. Dissolved silicadriven dolomite precipitation in the Great Salt Lake, Utah, and its implication for dolomite formation environments[J]. Sedimentology, 2023, 70(4): 1328-1347.

[89]

LI Rong, WANG Yongxiao, WANG Zecheng, et al. Geological characteristics of the southern segment of the Late Sinian—Early Cambrian Deyang—Anyue rift trough in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(2): 321-333.

[90]

SALLER A, WINTERBOTTOM C. Deep marine diagenesis, offshore Hawaii and Enewetak, with implications for older carbonates[J]. The Depositional Record, 2023, 9(3): 526-572.

[91]

PERRI E, TUCKER M. Bacterial fossils and microbial dolomite in Triassic stromatolites[J]. Geology, 2007, 35(3): 207-210.

[92]

YOU Xuelian, SUN Shu, ZHU Jingquan, et al. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: Implications for the role of organic substrate on dolomite precipitation[J]. Terra Nova, 2013, 25(5): 387-395.

[93]

GUO Pei, WEN Huaguo, LI Changzhi, et al. Tectonic and climatic controls on carbonate sedimentation in active orogen proximal lakes, Cenozoic Qaidam Basin, northern Tibetan Plateau[J]. Basin Research, 2023, 35(5): 1744-1771.

[94]

GUO Pei, WEN Huaguo, LI Changzhi, et al. Lacustrine dolomite in deep time: What really matters in early dolomite formation and accumulation?[J]. Earth-Science Reviews, 2023, 246: 104575.

[95]

GUO Pei, WEN Huaguo, SÁNCHEZ-ROMÁN M. Constraints on dolomite formation in a Late Palaeozoic saline alkaline lake deposit, Junggar Basin, north-west China[J]. Sedimentology, 2023, 70(7): 2302-2330.

[96]

RAUDSEPP M J, WILSON S A, MORGAN B, et al. Nonclassical crystallization of very high magnesium calcite and magnesite in the Coorong Lakes, Australia[J]. Sedimentology, 2022, 69(5): 2246-2266.

[97]

EHRENBERG S N, EBERLI G P, BAECHLE G. Porositypermeability relationships in Miocene carbonate platforms and slopes seaward of the Great Barrier Reef, Australia(ODP Leg 194, Marion Plateau)[J]. Sedimentology, 2006, 53(6): 1289-1318.

[98]

IMMENHAUSER A. On the delimitation of the carbonate burial realm[J]. The Depositional Record, 2022, 8(2): 524-574.

[99]

JIN Zhijun. Formation and accumulation of oil and gas in marine carbonate strata in Chinese sedimentary basins[J]. Science China Earth Sciences, 2011, 41(7): 910-926.

[100]

ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs[J]. Petroleum Exploration and Development, 2018, 45(6): 923-935.

[101]

ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4): 1-15.

[102]

SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. Major factors controlling the development of marine carbonate reservoirs[J]. Petroleum Exploration and Development, 2015, 42(5): 545-554.

[103]

SHEN Anjiang, LUO Xianying, HU Anping, et al. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment[J]. Petroleum Exploration and Development, 2022, 49(4): 637-647.

[104]

ZHOU Jingao, DENG Hongying, YU Zhou, et al. The genesis and prediction of dolomite reservoir in reef-shoal of Changxing Formation-Feixianguan Formation in Sichuan Basin[J]. Journal of Petroleum Science and Engineering, 2019, 178: 324-335.

[105]

ZHOU Jingao, XU Chunchun, YAO Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2): 158-166.

[106]

ZHOU Jingao, HAO Yi, DENG Hongying, et al. Genesis and distribution of vuggy dolomite reservoirs of the Lower Permian Qixia Formation and Maokou Formation, western-central Sichuan Basin[J]. Marine Origin Petroleum Geology, 2019, 24(4): 77-88.

[107]

HU Anping, SHEN Anjiang, YANG Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5): 916-928.

[108]

LI Wenzheng, ZHOU Jingao, ZHANG Jianyong, et al. Main controlling factors and favorable zone distribution of Xixiangchi Formation reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(1): 52-60.

[109]

XU Zhehang, LAN Caijun, HAO Fang, et al. Difference of mound-bank complex reservoir under different palaeogeographic environment of the Sinian Dengying Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(2): 235-250.

[110]

ZHAO Wenzhi, SHEN Anjiang, HU Anping, et al. A discussion on the geological background of marine carbonate reservoirs development in Tarim, Sichuan and Ordos Basin, China[J]. Acta Petrologica Sinica, 2015, 31(11): 3495-3508.

[111]

ZHAO Wenzhi, WANG Zecheng, HUANG Fuxi, et al. Hydrocarbon accumulation conditions and exploration position of ultra-deep reservoirs in onshore superimposed basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2020-2032.

[112]

KOESHIDAYATULLAH A, CORLETT H, HOLLIS C. An overview of structurally-controlled dolostone-limestone transitions in the stratigraphic record[J]. Earth-Science Reviews, 2021, 220: 103751.

[113]

KOESHIDAYATULLAH A, AL-SINAWI N, SWART P K, et al. Coevolution of diagenetic fronts and fluid-fracture pathways[J]. Scientific Reports, 2022, 12(1): 9278.

[114]

KOESHIDAYATULLAH A, CORLETT H, STACEY J, et al. Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin[J]. Sedimentology, 2020, 67(6): 2945-2973.

[115]

GASPARRINI M, MORAD D, MANGENOT X, et al. Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates[J]. Geology, 2023, 51(5): 471-475.

[116]

ARAÚJO C C, MADRUCCI V, HOMEWOOD P, et al. Stratigraphic and sedimentary constraints on presalt carbonate reservoirs of the South Atlantic Margin, Santos Basin, offshore Brazil[J]. AAPG Bulletin, 2022, 106(12): 2513-2546.

[117]

TAMOTO H, PESTILHO A L S, RUMBELSPERGER A M B. Impacts of diagenetic processes on petrophysical characteristics of the Aptian presalt carbonates of the Santos Basin, Brazil[J]. AAPG Bulletin, 2024, 108(1): 75-105.

[118]

SOARES M V T, DA SILVA BOMFIM L, VIDAL A C, et al. Presalt carbonate cyclicity and depositional environment: NMR petrophysics and Markov cyclicity of lacustrine acoustic facies(Santos Basin, Brazil)[J]. Marine and Petroleum Geology, 2023, 157: 106494.

[119]

BAPTISTA R J, FERRAZ A E, SOMBRA C, et al. The presalt Santos Basin, a super basin of the twenty-first century[J]. AAPG Bulletin, 2023, 107(8): 1369-1389.

[120]

YAO Genshun, HAO Yi, ZHOU Jingao, et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 31-37.

[121]

ZHOU Jingao, YAO Genshun, YANG Guang, et al. Genesis mechanism of the Sinian-Cambrian reservoirs in the Anyue Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 36-44.

[122]

XU Zhehang, LAN Caijun, ZHANG Benjian, et al. Impact of diagenesis on the microbial reservoirs of the terminal Ediacaran Dengying Formation from the Central to Northern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2022, 146: 105924.

[123]

XU Zhehang, LAN Caijun, MA Xiaolin, et al. Sedimentary models and physical properties of mound-shoal complex reservoirs in Sinian Dengying Formation, Sichuan Basin[J]. Earth Science, 2020, 45(4): 1281-1294.

[124]

YANG Yu, HUANG Xianping, ZHANG Jian, et al. Features and geologic significances of the top Sinian karst landform before the Cambrian deposition in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 38-43.

[125]

YANG Wei, WEI Guoqi, ZHAO Rongrong, et al. Characteristics and distribution of karst reservoirs in the Sinian Dengying Fm, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 55-60.

[126]

ZHENG Jianfeng, PAN Wenqing, SHEN Anjiang, et al. Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 499-511.

[127]

WANG Zhenyu, NING Keke, QU Haizhou, et al. Pore characteristics, origin, and evolution of different dolomites in the Cambrian Xiaoerbulak Formation in the Aksu area[J]. Acta Sedimentologica Sinica, 2023, 41(1): 256-269.

[128]

SHEN Anjiang, HU Anping, ZHANG Jie, et al. "Three-factor"driven microbial carbonate reservoirs and their distribution[J]. Oil & Gas Geology, 2022, 43(3): 582-596.

[129]

LYU Xiuxiang, LI Jianjiao, WANG Weiguang. Responses of marine carbonate reservoirs to fault activities[J]. Geological Science and Technology Information, 2009, 28(3): 1-5, 9.

[130]

LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015(3): 347-355.

[131]

JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207-216.

[132]

DING Zhiwen, WANG Rujun, CHEN Fangfang, et al. Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang Oilfield, Tarim Basin[J]. Petroleum Exploration and Development, 2020, 47(2): 286-296.

[133]

WANG Qinghua. Origin of gas condensate reservoir in Fuman Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1128-1139.

[134]

HE Xiao, TANG Qingsong, WU Guanghui, et al. Control of strike-slip faults on Sinian carbonate reservoirs in Anyue Gas Field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1116-1127.

[135]

LIANG Han, TANG Hao, RAN Qi, et al. The distribution, type and origin of the strike-slip faults in the central Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(8): 2609-2620.

[136]

WU Guanghui, ZOU Yu, XU Wei, et al. Distribution and petroleum exploration significance of Sinian strike-slip faults in the northern slope of Central Sichuan paleouplift[J]. Natural Gas Industry, 2023, 43(7): 35-43.

[137]

FENG Jianwei, GUO Honghui, WANG Rujun, et al. Segmentation genesis mechanism of strike-slip fracture of deep carbonate rocks in Tabei area, Tarim Basin[J]. Earth Science, 2023, 48(7): 2506-2519.

[138]

CHEN Honghan. Advances on relationship between strike-slip structures and hydrocarbon accumulations in large superimposed craton basins, China[J]. Earth Science, 2023, 48(6): 2039-2066.

[139]

FU Xiaofei, FENG Jun, WANG Haixue, et al. Sandbox physical simulation on "different period-different direction" deformation process of strike-slip faults: A case study of northern segment of Shunbei no. 5 fault in Tarim Basin[J]. Earth Science, 2023, 48(6): 2104-2116.

[140]

FU Xiaodong, ZHANG Benjian, WANG Zecheng, et al. Strikeslip faults in central and western Sichuan Basin and their control functions on hydrocarbon accumulation[J]. Earth Science, 2023, 48(6): 2221-2237.

[141]

ZHANG Wei, YANG Minghui, LI Chuntang, et al. Structural characteristics and evolution of intraplate strike-slip faults in Daniudi Block, Ordos Basin[J]. Earth Science, 2023, 48(6): 2267-2280.

[142]

SONG Jinmin, WANG Jiarui, LIU Shugen, et al. Types, composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata: A case study of Mao-1 Member of Middle Permian Maokou Formation, eastern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2024, 51(2): 311-322.

[143]

LI Qiang, SHI Jiangbo, ZHOU Cong, et al. Characteristics and evaluation of muddy limestone reservoir in the first member of Maokou Formation of Hechuan-Tongnan area, central Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(12): 1986-1996.

[144]

JIANG Qingchun, WANG Zecheng, SU Wang, et al. Accumulation conditions and favorable exploration orientation of unconventional natural gas in the marl source rock of the first member of the Middle Permian Maokou Formation, Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(6): 82-97.

[145]

ZHU Dancheng, YU Yamin, LI Ting, et al. Karst development and distribution pattern of the Maokou Formation in Yuanba area, northern Sichuan Basin[J]. Journal of Palaeogeography, 2023, 25(3): 701-714.

[146]

WANG Zecheng, XIN Yongguang, XIE Wuren, et al. Petroleum geology of marl in Triassic Leikoupo Formation and discovery significance of Well Chongtan1 in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(5): 950-961.

[147]

XIN Yongguang, WEN Long, ZHANG Hao, et al. Study on reservoir characteristics and exploration field of the Middle Triassic Leikoupo Formation in Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(4): 91-102.

[148]

XIE Wuren, WEN Long, WANG Zecheng, et al. Types of unconventional marine resources and favorable exploration directions in the Permian-Middle Triassic of the Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(6): 961-971.

[149]

LIANG Xing, XU Zhengyu, LI Weimin, et al. Characteristics and main controlling factors of the limy source rock gas reservoir in the first member of the Middle Permian Maokou Formation in the southern Sichuan and western Chongqing area: A case study of Well DB1[J]. Petroleum Geology and Experiment, 2023, 45(4): 714-725.

[150]

YANAY N, WANG Zhennan, DETTMAN D L, et al. Rapid and precise measurement of carbonate clumped isotopes using laser spectroscopy[J]. Science Advances, 2022, 8(43): eabq0611.

[151]

PEREZ-BELTRAN S, ZAHEER W, SUN Zeyang, et al. Density functional theory and ab initio molecular dynamics reveal atomistic mechanisms for carbonate clumped isotope reordering[J]. Science Advances, 2023, 9(26): eadf1701.

[152]

FIEBIG J, BAJNAI D, LÖFFLER N, et al. Combined highprecision Δ48 and Δ47 analysis of carbonates[J]. Chemical Geology, 2019, 522: 186-191.

[153]

BAJNAI D, GUO Weifu, SPÖTL C, et al. Dual clumped isotope thermometry resolves kinetic biases in carbonate formation temperatures[J]. Nature Communications, 2020, 11(1): 4005.

[154]

SWART P K, LU Chaojin, MOORE E W, et al. A calibration equation between Δ48 values of carbonate and temperature[J]. Rapid Communications in Mass Spectrometry, 2021, 35(17): e9147.

[155]

DICKSON J A D, HODELL D A, SWART P K, et al. Clumped isotope analysis of zoned calcite cement, Carboniferous, Isle of Man[J]. The Depositional Record, 2023, 9(3): 635-646.

[156]

GOLDBERG S L, PRESENT T M, FINNEGAN S, et al. A highresolution record of early Paleozoic climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2013083118.

[157]

FERNANDEZ A, KORTE C, ULLMANN C V, et al. Reconstructing the magnitude of Early Toarcian(Jurassic)warming using the reordered clumped isotope compositions of belemnites[J]. Geochimica et Cosmochimica Acta, 2021, 293: 308-327.

[158]

QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology and Experiment, 2023, 45(5): 891-903.

[159]

HU Anping, SHEN Anjiang, CHEN Yana, et al. Reconstruction of tectonic-burial evolution history of Sinian Dengying Formation in Sichuan Basin based on the constraints of in-situ laser ablation U-Pb date and clumped isotopic thermometer(Δ47)[J]. Petroleum Geology and Experiment, 2021, 43(5): 896-905, 914.

[160]

PING Hongwei, DENG Wenfeng, CHEN Honghan, et al. Fluid inclusion calibration of clumped-isotope solid-state reordering in dolomite: Implication for thermal history reconstruction in deeply buried reservoirs[J]. Marine and Petroleum Geology, 2024, 163: 106773.

[161]

QIAO Zhanfeng, YU Zhou, SHE Min, et al. Progresses on ancient ultra-deeply buried marine carbonate reservoir in China[J]. Journal of Palaeogeography, 2023, 25(6): 1257-1276.

[162]

LIU Jiaqing, LI Zhong, YAN Mengke, et al. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: Clumped isotopic evidence[J]. Oil & Gas Geology, 2020, 41(1): 68-82.

[163]

JIANG Lei, SHEN Anjiang, WANG Zichen, et al. U-Pb geochronology and clumped isotope thermometry study of Neoproterozoic dolomites from China[J]. Sedimentology, 2022, 69(7): 2925-2945.

[164]

LI Pingping, WANG Chun, ZOU Huayao, et al. Application of clumped isotopes to restoration of dolomitizing fluids and its limitations[J]. Oil & Gas Geology, 2021, 42(3): 738-746.

[165]

PAN Liyin, SHEN Jiangng, ZHAO Jianxin, et al. LA-ICP-MS UPb geochronology and clumped isotope constraints on the formation and evolution of an ancient dolomite reservoir: The Middle Permian of northwest Sichuan Basin(SW China)[J]. Sedimentary Geology, 2020, 407: 105728.

[166]

WANG Rui, XIAO Yang, YU Kefu, et al. Temperature regimes during formation of Miocene island dolostones as determined by clumped isotope thermometry: Xisha Islands, South China Sea[J]. Sedimentary Geology, 2022, 429: 106079.

[167]

LU Chaojin, ZOU Huayao, WANG Guangwei, et al. Clumped isotopes of paired dolomite and calcite constraining alteration histories of ancient carbonate successions[J]. Chemical Geology, 2023, 617: 121264.

[168]

LU Chaojin, KOESHIDAYATULLAH A, LI Fei, et al. A clumped isotope diagenetic framework for the Ediacaran dolomites: Insights to fabric-specific geochemical variabilities[J]. Sedimentology, 2024, 71(2): 546-572.

[169]

LU Chaojin, SWART P K. The application of dual clumped isotope thermometer(Δ47 and Δ48)to the understanding of dolomite formation[J]. Geology, 2024, 52(1): 56-60.

[170]

SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1062-1074.

[171]

SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487.

[172]

ZHOU Jingao, YU Zhou, WU Dongxu, et al. Restoration of formation processes of dolomite reservoirs based on laser U-Pb dating: A case study of Ordovician Majiagou Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2): 285-295.

[173]

QIAO Zhanfeng, ZHANG Shaonan, SHEN Anjiang, et al. Laser ablated U-Pb dating-based determination of burial dolomitization process: A case study of Lower Ordovician Penglaiba Formation of Yonganba Outcrop in Tarim Basin[J]. Acta Petrologica Sinica, 2020, 36(11): 3493-3509.

[174]

SHEN Anjiang, HU Anping, ZHENG Jianfeng, et al. Reconstruction of tectonic-burial evolution based on the constraints of laser in situ U-Pb date and clumped isotopic temperature: A case study from Sinian Qigebulak Formation in Akesu area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2021, 26(3): 200-210.

[175]

HU Anping, SHEN Anjiang, LIANG Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49.

[176]

QIAO Zhanfeng, SHEN Anjiang, ZHANG Shaonan, et al. Origin of giant Ordovician cavern reservoirs in the Halahatang oil field in the Tarim Basin, northwestern China[J]. AAPG Bulletin, 2023, 107(7): 1105-1135.

[177]

MA Xiaoning. Methods and research progress of Mg isotope analysis in carbonate rocks[J]. Journal of Geology, 2023, 47(4): 428-437.

[178]

GALY A, BAR-MATTHEWS M, HALICZ L, et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters, 2002, 201(1): 105-115.

[179]

HIGGINS J A, SCHRAG D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5039-5053.

[180]

HUANG Kangjun, SHEN Bing, LANG Xianguo, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates[J]. Geochimica et Cosmochimica Acta, 2015, 164: 333-351.

[181]

PENG Yang, SHEN Bing, LANG Xianguo, et al. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the Middle Cambrian Xuzhuang Formation, North China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(3): 1109-1129.

[182]

LI Xi, ZHU Guangyou, LI Tingting, et al. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence[J]. Earth Science Frontiers, 2023, 30(4): 352-375.

[183]

LI Xi, ZHU Guangyou, LI Tingting, et al. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1585-1603.

[184]

ZHU Guangyou, LI Xi. Progress in genetic types and research methods of dolomite[J]. Acta Petrolei Sinica, 2023, 44(7): 1167-1190.

[185]

ZHU Guangyou, LI Xi, LI Tingting, et al. Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan Basin[J]. Acta Geologica Sinica, 2023, 97(3): 753-771.

[186]

ZHU Guangyou, LI Xi, LI Tingting, et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin[J]. Science China Earth Sciences, 2023, 53(2): 319-344.

[187]

TEICHERT S, WOELKERLING W, MUNNECKE A. Coralline red algae from the Silurian of Gotland indicate that the ordercorallinales(Corallinophycidae, Rhodophyta)is much older than previously thought[J]. Palaeontology, 2019, 62(4): 599-613.

[188]

NEMRA A, OUALI MEHADJI A, MUNNECKE A, et al. Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins[J]. Facies, 2019, 65(2): 17.

[189]

FARQUHAR J, WING B A. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth and Planetary Science Letters, 2003, 213(1/2): 1-13.

[190]

JOHNSTON D T, FARQUHAR J, WING B A, et al. Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators[J]. American Journal of Science, 2005, 305(6/8): 645-660.

[191]

SANSJOFRE P, CARTIGNY P, TRINDADE R I F, et al. Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth[J]. Nature Communications, 2016, 7(1): 12192.

[192]

KUNZMANN M, BUI T H, CROCKFORD P W, et al. Bacterial sulfur disproportionation constrains timing of Neoproterozoic oxygenation[J]. Geology, 2017, 45(3): 207-210.

[193]

WU Nanping, FARQUHAR J, FIKE D A. Ediacaran sulfur cycle: Insights from sulfur isotope measurements(Δ33S and δ34S) on paired sulfate-pyrite in the Huqf Supergroup of Oman[J]. Geochimica et Cosmochimica Acta, 2015, 164: 352-364.

[194]

LUO Genming, RICHOZ S, VAN DE SCHOOTBRUGGE B, et al. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic-Jurassic boundary mass extinction[J]. Geochimica et Cosmochimica Acta, 2018, 231: 73-87.

Oil & Gas Geology
Pages 929-953
Cite this article:
ZHOU J, XU Z, HUAN S, et al. Frontiers and trends in the research on carbonate sedimentology and reservoir geology. Oil & Gas Geology, 2024, 45(4): 929-953. https://doi.org/10.11743/ogg20240404
Metrics & Citations  
Article History
Copyright
Return