AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

A multilocus molecular phylogeny for the avian genus Liocichla (Passeriformes: Leiothrichidae: Liocichla)

Herman L Mays Jr1,2( )Bailey D McKay3Dieter Thomas Tietze4Cheng-Te Yao5Lindsey N Miller6Kathleen N Moreland6Fumin Lei7
Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Science Building 350, Huntington, WV 25755, USA
Cincinnati Museum Center, 1301 Western Avenue, Cincinnati, OH 45203, USA
American Museum of Natural History, Central Park W and 79th St, New York, NY 10024, USA
Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
Endemic Species Research Institute, 1 Minsheng East Road, Jiji Township, Nantou County, Taiwan
6 Biotechnology Program, Loveland High School, 1 Tiger Trail, Love-land, OH 45140, USA
Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
Show Author Information

Abstract

Background

Historically the babblers have been assigned to the family Timaliidae but several recent studies have attempted to rest the taxonomy of this diverse passerine assemblage on a more firm evolutionary footing. The result has been a major rearrangement of the group. A well-supported and comprehensive phylogeny for this widespread avian group is an important part of testing evolutionary and biogeographic hypotheses, especially in Asia where the babblers are a key component of many forest ecosystems. However, the genus Liocichla is poorly represented in these prior studies of babbler systematics.

Methods

We used a multilocus molecular genetic approach to generate a phylogenetic hypothesis for all five currently recognized species in the avian genus Liocichla. Multilocus DNA sequence data was used to construct individual gene trees using maximum likelihood and species trees were estimated from gene trees using Bayesian analyses. Divergence dates were obtained using a molecular clock approach.

Results

Molecular data estimate a probable window of time for the origin for the Liocichla from the mid to late Miocene, between 5.55 and 12.87 Ma. Despite plumage similarities between the insular Taiwan endemic, L. steerii, and the continental L. bugunorum and L. omeiensis, molecular data suggest that L. steerii is the sister taxon to all continental Liocichla. The continental Liocichla are comprised of two lineages; a lineage containing L. omeiensis and L. bugunorum and a lineage comprised of L. phoenicea and L. ripponi. The comparatively early divergence of L. steerii within the Liocichla may be illusory due to extinct and therefore unsampled lineages. L. ripponi and L. phoenicea are parapatric with a Pleistocene split (0.07-1.88 Ma) occurring between an Eastern Himalayan L. phoenicea and a Northern Indochina distributed L. ripponi. L. bugunorum and L. omeiensis underwent a similar split between the Eastern Himalaya (L. bugunorum) and Central China (L. omeiensis) divided by the Hengduan Mountains.

Conclusions

This study supports an origin of the Liocichla occurring sometime prior to the Miocene-Pliocene boundary, a period of significant climatic upheaval in Asia. The biogeographical patterns within the Liocichla mirror those of other birds in the region and allude to common geological and climatic drivers of avian diversification in Asia.

References

1
Collar NJ, Robson C (2007) Family Timaliidae (Babblers). In: del Hoyo J, Elliott A, Christie D (eds) Handbook of birds of the World. Lynx Edicions, Barcelona, pp 70-291
2

Pfeifer R (2013) What is a babbler? Fascinating diversity of life strategies and challenge for systematists. Vogelwarte 51:117-126

3

Alström P, Ericson PGP, Olsson U, Sundberg P (2006) Phylogeny and classification of the avian superfamily Sylvioidea. Mol Phylogenet Evol 38:381-397

4

Alström P, Olsson U, Lei FM (2013) A review of the recent advances in the systematics of the avian superfamily Sylvioidea. Chin Birds 4:99-131

5

Alström P, Hopper DM, Liu Y, Olsson U, Mohan D, Gelang M et al (2014) Discovery of a relict lineage and monotypic family of passerine birds. Biol Lett 10:20131067

6

Cibois A (2003) Mitochondrial DNA phylogeny of babblers (Timaliidae). Auk 120:35-54

7

Cibois A, Kalyakin MV, Han L-X, Pasquet E (2002) Molecular phylogenetics of babblers (Timaliidae): revaluation of the genera Yuhina and Stachyris. J Avian Biol 33:380-390

8

Dong F, Li S-H, Yang X-J (2010) Molecular systematics and diversification of the Asian scimitar babblers (Timaliidae, Aves) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 57:1268-1275

9

Dong F, Wu F, Liu LM, Yang XJ (2010) Molecular phylogeny of the barwings (Aves: Timaliidae: Actinodura), a paraphyletic group, and its taxonomic implications. Zool Stud 49:703-709

10

Gelang M, Cibois A, Pasquet E, Olsson U, Alström P, Ericson PGP (2009) Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification. Zool Scr 38:225-236

11

Moyle RG, Andersen MJ, Oliveros CH, Steinheimer FD, Reddy S (2012) Phylogeny and biogeography of the core babblers (Aves: Timaliidae). Syst Biol 61:631-651

12

Reddy S (2008) Systematics and biogeography of the shrike-babblers (Pteruthius): species limits, molecular phylogenetics, and diversification patterns across southern Asia. Mol Phylogenet Evol 47:54-72

13

Reddy S, Cracraft J (2007) Old World Shrike-babblers (Pteruthius) belong with New World Vireos (Vireonidae). Mol Phylogenet Evol 44:1352-1357

14

Oliveros CH, Reddy S, Moyle RG (2012) The phylogenetic position of some Philippine "babblers" spans the muscicapoid and sylvioid bird radiations. Mol Phylogenet Evol 65:799-804

15

Beecher WJ (1953) A phylogeny of the Oscines. Auk 70:270-333

16

Collar NJ (2006) A partial revision of the Asian babblers (Timaliidae). Forktail 22:85-112

17

Delacour J (1946) Les timaliinés. L'Oiseau 16:7-36

18

Mayr E, Amadon D (1951) A classification of recent birds. Am Mus Novit 1496:1-42

19

Pasquet E, Bourdon E, Kalyakin MV, Cibois A (2006) The fulvettas (Alcippe, Timaliidae, Aves): a polyphyletic group. Zool Scr 35:559-566

20

Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci USA 101:11040-11045

21

Fregin S, Haase M, Olsson U, Alström P (2012) New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers. BMC Evol Biol 12:157

22
Gill F, Donsker D (eds) (2015) IOC World Bird List (v 5.2). doi: 10.14344/IOC.ML.5.2https://doi.org/10.14344/IOC.ML.5.2
23

Collar NJ (2011) Taxonomic notes on some Asian babblers (Timaliidae). Forktail 27:100-102

24
Dickinson EC, Christidis L (2014) The Howard and Moore complete checklist of the birds of the world, vol 2: Passerines, 4th edn. Christopher Helm, London
25

Athreya R (2006) A new species of Liocichla (Aves: Timaliidae) from Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India. Indian Birds 2:82-94

26

Fu Y, Dowell SD, Zhang Z (2013) Emei Shan Liocichla: population, behavior and conservation. Chin Birds 4:260-264

27

Peterson AT, Papeş M (2006) Potential geographic distribution of the Bugun Liocichla Liocichla bugunorum, a poorly-known species from north-eastern India. Indian Birds 2:146-149

28

McKay BD, Mays HL Jr, Peng Y-W, Kozak KH, Yao C-T, Yuan H-W et al (2010) Recent range-wide demographic expansion in a Taiwan endemic montane bird, Steere's Liocichla (Liocichla steerii). BMC Evol Biol 10:71

29
Dickinson EC (2003) The Howard and Moore complete checklist of the birds of the world, 3rd edn. Christopher Helm, London
30

Luo X, Qu YH, Han LX, Li S-H, Lei FM (2009) A phylogenetic analysis of laughingthrushes (Timaliidae: Garrulax) and allies based on mitochondrial and nuclear DNA sequences. Zool Scr 38:9-22

31

Päckert M, Martens J, Sun Y-H, Severinghaus LL, Nazarenko AA, Ting J et al (2011) Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes). J Biogeogr 39:556-573

32

de Bruyn M, Stelbrink B, Morley RJ, Hall R, Carvalho GR, Cannon CH et al (2014) Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst Biol 63:879-901

33

Price TD, Hooper DM, Buchanan CD, Johansson US, Tietze DT, Alström P et al (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509:222-225

34

Backström N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964-980

35

Primmer CR, Borge T, Lindell J, Sætre GP (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol Ecol 11:603-612

36

Marini MÂ, Hackett SJ (2002) A multifaceted approach to the characterization of an intergeneric hybrid manakin (Pipridae) from Brazil. Auk 119:1114-1120

37

Moonsamy PV, Williams T, Bonella P, Holcomb CL, Höglund BN, Hillman G et al (2013) High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation. Tissue Antigens 81:141-149

38

Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12(2):105-114

39

Chesser RT (1999) Molecular systematics of the Rhinocryptid genus Pteroptochos. Condor 101:439-446

40

Groth JG (1998) Molecular phylogenetics of finches and sparrows: consequences of character state removal in cytochrome b sequences. Mol Phylogenet Evol 10(3):377-390

41

Reddy S, Moyle RG (2011) Systematics of the scimitar babblers (Pomatorhinus: Timaliidae): Phylogeny, biogeography and species-limits of four species complexes. Biol J Linn Soc 102:846-869

42

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649

43

Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978-989

44

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452

45

Bruen TC, Philippe H, Bryant D (2006) A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665-2681

46

Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254-267

47

Hudson RR, Kreitman M, Aguadé M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153-159

48

Darriba D, Taboada GL, Ramón D, Posada D (2012) JModelTest 2: more models, new hueristics and parallel computing. Nat Methods 9:772

49

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307-321

50

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696-704

51
Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and Other Methods) v 4. Sinauer Associates, Sunderland
52

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10:e1003537

53

Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570-580

54
Bouckaert R (2015) bModelTest: Bayesian site model selection for nucleotide data. bioRxiv. http://dx.doi.org/10.1101/020792. Accessed 28 July 2015https://doi.org/10.1101/020792
55

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

56

Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321-2328

57

Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic molecular evolution and refutes the standard molecular clock. Mol Biol Evo 23:1731-1740

58

Fleischer RC, McIntosh CE, Tarr CL (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol Ecol 7:533-545

59
Rambaut A, Suchard M, Xie D, Drummond AJ (2014) Tracer v 1.6. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 28 July 2015
60

Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157-2167

61

Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17(9):2107-2121

62

Mays HL Jr, Doucet SM, Yao C-T, Yuan H-W (2006) Sexual dimorphism and dichromatism in Steere's Liocichla (Liocichla steerii). J Field Ornithol 77:437-443

63

Dong F, Li S-H, Zou FS, Lei FM, Liang W, Yang JX et al (2014) Molecular systematics and plumage coloration evolution of an enigmatic babbler (Pomatorhinus ruficollis) in East Asia. Mol Phylogenet Evol 70:76-83

64

McKay BD, Mays HL Jr, Wu YC, Li H, Yao C-T, Nishiumi I et al (2013) An empirical comparison of character-based and coalescent-based approaches to species delimitation in a young avian complex. Mol Ecol 22:4943-4957

65

Reddy S, Sharief S, Yohe LR, Witkowski J, Hosner PA, Nyári ÁS et al (2015) Untangling taxonomic confusion and diversification patterns of the Streak-breasted Scimitar Babblers (Timaliidae: Pomatorhinus ruficollis complex) in southern Asia. Mol Phylogenet Evol 82:183-192

66

Stoddard MC, Prum RO (2011) How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol 22:1042-1052

67

Friedman NR, McGraw KJ, Omland KE (2014) Evolution of carotenoid pigmentation in caciques and meadowlarks (Icteridae): repeated gains of red plumage coloration by carotenoid C4-oxygenation. Evolution 68:791-801

68

Omland KE, Lanyon SM (2000) Reconstructing plumage evolution in orioles (Icterus): repeated convergence and reversal in patterns. Evolution 54:2119-2133

69

Molnar P (2005) Mio-Pliocene growth of the Tibetan plateau and evolution of East Asian climate. Palaeontol Electron 8:2A

70

Zhang R, Jiang DB, Zhang ZS, Yu E (2015) The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeogr Palaeoclimatol Palaeoecol 417:137-150

71

Bird MI, Taylor D, Hunt C (2005) Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quat Sci Rev 24:2228-2242

72

Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V et al (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153-158

73

McKay BD (2011) A new timeframe for the diversification of Japan's mammals. J Biogeogr 39:1134-1143

74

Johansson US, Alström P, Olsson U, Ericson PGP, Sundberg P, Price TD (2007) Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61:324-333

75

Qu YH, Song G, Gao B, Quan Q, Ericson PGP, Lei FM (2014) The influence of geological events on the endemism of East Asian birds studied through comparative phylogeography. J Biogeogr 42:179-192

76

Che J, Zhou WW, Hu JS, Yan F, Papenfuss TJ, Wake DB et al (2010) Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia. Proc Natl Acad Sci USA 107:13765-13770

77

Qiu YX, Guan BC, Fu CX, Comes HP (2009) Did glacials and/or interglacials promote allopatric incipient speciation in East Asian temperate plants? Phylogeographic and coalescent analysis on refugial isolation and divergence in Dysosma versipellis. Mol Phylogenet Evol 51:281-293

78

Wang L, Schneider H, Zhang XC, Xiang QP (2012) The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biol 12:210

79

Wang WJ, McKay BD, Dai CY, Zhao N, Zhang RY, Qu YH et al (2013) Glacial expansion and diversification of an East Asian montane bird, the green-backed tit (Parus monticolus). J Biogeogr 40:1156-1169

80

Song G, Qu YH, Yin ZH, Li S-H, Liu N, Lei FM (2009) Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long population history beyond late Pleistocene glaciations. BMC Evol Biol 9:143

81

Zou FS, Lim H-C, Marks BD, Moyle RG, Sheldon FH (2007) Molecular phylogenetic analysis of the Grey-cheeked Fulvetta (Alcippe morrisonia) of China and Indochina: a case of remarkable genetic divergence in a "species". Mol Phylogenet Evol 44:165-174

82

Lovette IJ (2004) Mitochondrial dating and mixed support for the "2% Rule" in birds. Auk 121:1-6

83

Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4(3):216-224

84

Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20:320-327

85

Teng LS (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics 183:57-76

86

Huang C-Y, Yuan PB, Tsao S-J (2006) Temporal and spatial records of active arc-continent collision in Taiwan: a synthesis. Geol Soc Am Bull 118:274-288

87

Lee Y-H, Chen C-C, Liu T-K, Ho H-C, Lu H-Y, Lo W (2006) Mountain building mechanisms in the Southern Central Range of the Taiwan Orogenic Belt—From accretionary wedge deformation to arc—continental collision. Earth Planet Sci Lett 252:413-422

88

Päckert M, Martens J, Severinghaus LL (2008) The Taiwan Firecrest (Regulus goodfellowi) belongs to the Goldcrest assemblage (Regulus regulus s. l.): evidence from mitochondrial DNA and the territorial song of the Regulidae. J Ornithol 150:205-220

89

Wu HC, Lin RC, Hung H-Y, Yeh C-F, Chu J-H, Yang XJ et al (2011) Molecular and morphological evidences reveal a cryptic species in the Vinaceous rosefinch Carpodacus vinaceus (Fringillidae; Aves). Zool Scr 40:468-478

90

Tietze DT, Päckert M, Martens J, Lehmann H, Sun Y-H (2013) Complete phylogeny and historical biogeography of true rosefinches (Aves: Carpodacus). Zool J Linn Soc 169:215-234

91

McKay BD, Mays HL Jr, Yao C-T, Wan D, Higuchi H, Nishiumi I (2014) Incorporating color into integrative taxonomy: analysis of the varied tit (Sittiparus varius) complex in East Asia. Syst Biol 63:505-517

92

Chou Y-W, Thomas PI, Ge X-J, LePage BA, Wang C-N (2011) Refugia and phylogeography of Taiwania in East Asia. J Biogeogr 38:1992-2005

93

Jang-Liaw N-H, Lee T-H, Chou W-H (2008) Phylogeography of Sylvirana latouchii (Anura, Ranidae) in Taiwan. Zool Sci 25:68-79

94

Jang-Liaw N-H, Chou W-H (2011) Phylogeography of the fanged dicroglossine frog, Limnonectes fujianensis (Anura, Ranidae), in Taiwan. Zool Sci 28:254-263

95

Huang J-P, Lin C-P (2011) Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan. BMC Evol Biol 11:94

96

Lei FM, Qu YH, Lu JL, Liu Y, Yin ZH (2003) Conservation on diversity and distribution patterns of endemic birds in China. Biodivers Conserv 12:239-254

97

Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I et al (2014) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetn biotas. Biol Rev Camb Philos Soc 90:236-253

98

Li Y, Zhai SN, Qiu YX, Guo YP, Ge XJ, Comes HP (2011) Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae). Mol Phylogenet Evol 59:412-424

99

Kingdon-Ward F (1921) The Mekong-Salween divide as a geographical barrier. Geogr J 58:49-56

Avian Research
Article number: 17
Cite this article:
Mays Jr HL, McKay BD, Tietze DT, et al. A multilocus molecular phylogeny for the avian genus Liocichla (Passeriformes: Leiothrichidae: Liocichla). Avian Research, 2015, 6(1): 17. https://doi.org/10.1186/s40657-015-0025-y

723

Views

32

Downloads

5

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 18 February 2015
Accepted: 21 July 2015
Published: 05 August 2015
© 2015 Mays Jr et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Return