AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (476 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Characterization of novel microsatellite markers of the Emei Shan Liocichla using restriction site-associated DNA sequencing

Ailin Yang1De Chen1Pengcheng Wang1Yiqiang Fu2( )Zhengwang Zhang( )
Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
College of Life Sciences, Leshan Normal University, Leshan, Sichuan 614000, China
Show Author Information

Abstract

Background

The Emei Shan Liocichla (Liocichla omeiensis) is an endemic bird species to southwestern China with a small geographic range. However, little was known about the genetic status of this threatened species.

Methods

We applied restriction-site-associated DNA sequencing (RAD-Seq) for rapid mass identification of microsatellite markers of the Emei Shan Liocichla.

Results

A total of 11, 564 microsatellite sequences were obtained, 600 random loci were designed for screening and 24 polymorphic microsatellite loci were selected for further validation. The average allele number, average observed heterozygosity and average expected heterozygosity were relatively low in our samples, which were 6.08, 0.6618 and 0.7048, respectively, indicating that the Emei Shan Liocichla might have lost some genetic diversity. Further analyses suggested that the populations distributed on two mountains (Daxiangling and Xiaoliangshan) showed a modest degree of genetic differentiation.

Conclusions

These novel microsatellite markers provided valuable preliminary knowledge regarding the genetic status of the Emei Shan Liocichla and can be useful in further studies, as well as in the management and conservation of this species.

References

 

Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. 2016;17:81-92.

 

Armstrong DP, Seddon PJ. Directions in reintroduction biology. Trends Ecol Evol. 2008;23:20-5.

 

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE. 2008;3:e3376.

 

Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genom. 2011;12:1-9.

 
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France); 2004.
 

BirdLife International. Liocichla omeiensis. The IUCN Red List of Threatened Species 2017. Cambridge: BirdLife International; 2017.

 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114-20.

 

Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet. 1980;32:314-31.

 

Bruford MW, Wayne RK. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev. 1993;3:939-43.

 

Carvajal-Rodriguez A, de Uña-Alvarez J. Assessing significance in high-throughput experiments by sequential goodness of fit and q-value estimation. PLoS ONE. 2011;6:e24700.

 

Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD. Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE. 2012;7:e30953.

 

Chapuis M-P, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24:621-31.

 

Chapuis MP, Plantamp C, Streiff R, Blondin L, Piou C. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Mol Ecol. 2015;24:6107-19.

 

Collar N, Robson C, de Juana E. Grey-cheeked Liocichla (Liocichla omeiensis). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, editors. Handbook of the birds of the world alive. Barcelona: Lynx Edicions; 2016.

 

Dawson DA, Horsburgh GJ, Küpper C, Stewart IRK, Ball AD, Durrant KL, Hansson B, Bacon IDA, Bird S, Klein Á, Krupa AP, Lee JW, Martín-Gálvez D, Simeoni M, Smith G, Spurgin LG, Burke T. New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility—as demonstrated for birds. Mol Ecol Resour. 2010;10:475-94.

 

Duncan CJ, Worth JRP, Jordan GJ, Jones RC, Vaillancourt RE. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii. Heredity. 2016;116:99-106.

 

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-7.

 

Faria J, Pita A, Rivas M, Martins GM, Hawkins SJ, Ribeiro P, Neto AI, Presa P. A multiplex microsatellite tool for conservation genetics of the endemic limpet Patella candei in the Macaronesian archipelagos. Aquat Conserv. 2016;26:775-81.

 

Frankham R, Briscoe DA, Ballou JD. Introduction to conservation genetics. Cambridge: Cambridge University Press; 2002.

 

Fu Y, Zhang Z. The influence of abnormal low-temperature of spring and summer on the breeding of Omei Shan Liocichla (Liocichla omeiensis). Beijing Norm Univ (Nat Sci). 2011;47:292-5 (in Chinese).

 

Fu Y, Dowell SD, Zhang Z. Breeding ecology of the Emei Shan Liocichla (Liocichla omeiensis). Wilson J Ornithol. 2011;123:748-54.

 

Gill FB. Ornithology. New York: W.H. Freeman & Company; 2007.

 

Gu LY, Liu Y, Wang N, Zhang ZW. A panel of polymorphic microsatellites in the Blue Eared Pheasant (Crossoptilon auritum) developed by cross-species amplification. Chin Birds. 2012;3:103-7.

 

Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11:591-611.

 

Hua F, Wang X, Zheng X, Fisher B, Wang L, Zhu J, Tang Y, Douglas WY, Wilcove DS. Opportunities for biodiversity gains under the world's largest reforestation programme. Nat Commun. 2016;7:12717.

 

Huang J, Zhu D, Song X, Chen B, Zeng C, Moermond T, Zhang X, Yue B. High-throughput microsatellite markers discovery for the Sichuan Hill Partridge (Arborophila rufipectus) and assessment of genetic diversity in the Laojunshan population. Biochem Syst Ecol. 2015;60:266-72.

 

Jamieson IG. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv Biol. 2011;25:115-23.

 

Jarne P, Lagoda PJL. Microsatellites, from molecules to populations and back. Trends Ecol Evol. 1996;11:424-9.

 

Keller LF, Waller DM. Inbreeding effects in wild populations. Trends Ecol Evol. 2002;17:230-41.

 

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4.

 

Lalitha S. Primer premier 5. Biotech Softw Internet Rep. 2000;1:270-2.

 

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60.

 

Li Y, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11:2453-65.

 

Marshall TC, Slate J, Kruuk LEB, Pemberton JM. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol. 1998;7:639-55.

 

McKay BD, Mays HL, Peng Y-W, Kozak KH, Yao C-T, Yuan H-W. Recent range-wide demographic expansion in a Taiwan endemic montane bird, Steere's Liocichla (Liocichla steerii). BMC Evol Biol. 2010;10:71.

 

Meffe GK, Carroll CR. Principles of conservation biology. Sunderland: Sinauer; 1994.

 

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17:240-8.

 

Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, Taller J. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet. 2012;50:670-2.

 

Pfender WF, Saha MC, Johnson EA, Slabaugh MB. Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet. 2011;122:1467-80.

 

Ribon R, Simon JE, Theodoro De Mattos G. Bird extinctions in Atlantic forest fragments of the Viçosa region, southeastern Brazil. Conserv Biol. 2003;17:1827-39.

 

Ryman N, Leimar O. Effect of mutation on genetic differentiation among nonequilibrium populations. Evolution. 2008;62:2250-9.

 

Sudheer PDVN, Mastan SG, Rahman H, Prakash CR, Singh S, Reddy MP. Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa. Mol Biol Rep. 2010;38:1383-8.

 

Tregenza T, Wedell N. Polyandrous females avoid costs of inbreeding. Nature. 2002;415:71-3.

 

Twedt DJ, Wilson RR, Henne-Kerr JL, Grosshuesch DA. Avian response to bottomland hardwood reforestation: the first 10 years. Restor Ecol. 2002;10:645-55.

 

Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535-8.

 

Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics. 2003;163:1177-91.

 

Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Mol Ecol. 2002;11:1-16.

 

Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821-9.

 

Zhang L, Zhang ZH, Shen FJ, Hou R, Zhang WP, Liu YL, Tu KY, Yang AL. Identification and characterization of polymorphic microsatellite loci in the red-crowned crane. Genet Mol Res. 2015;14:15169-76.

Avian Research
Article number: 13
Cite this article:
Yang A, Chen D, Wang P, et al. Characterization of novel microsatellite markers of the Emei Shan Liocichla using restriction site-associated DNA sequencing. Avian Research, 2017, 8(1): 13. https://doi.org/10.1186/s40657-017-0071-8

571

Views

23

Downloads

4

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 26 February 2017
Accepted: 18 May 2017
Published: 26 May 2017
© The Author(s) 2017.

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Return