Abstract
Accurately assigning hatchlings to the eggs from which they hatched is a prerequisite to understanding how the composition and environment of eggs affect the growth and survival of nestlings. Correctly assigning hatchlings to their eggs can be a challenging endeavor, however, because multiple eggs within the same clutch can hatch at essentially the same time. Egg and hatchling mass are highly correlated in most bird species, and thus assigning eggs to hatchlings using their relative mass (e.g., matching the heaviest hatchling to the heaviest candidate egg) could prove extremely useful.
To assess its potential utility, I applied relative mass assignment (RMA) retrospectively to a dataset of 133 Common Grackle (Quiscalus quiscula) nests in which all egg-hatchling dyads were determined unequivocally.
I found that RMA correctly assigned approximately 90% of hatchlings to their eggs when 2-4 hatchlings were present between checks. The number of nests in which hatchlings could not be assigned to their egg, however, increased monotonically from 13 to 46 to 78% for nests containing 2, 3, and 4 hatchlings, respectively, due to the greater likelihood that the mass of hatchlings or their candidate eggs was identical.
Although RMA correctly identified the vast majority of egg-hatchling dyads, researchers should use this method with caution, because it will always inflate positive egg-size effects and thus could potentially result in erroneously reporting significant effects.