AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (578.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Disturbance increases high tide travel distance of a roosting shorebird but only marginally affects daily energy expenditure

Hans Linssen1,2 ( )Martijn van de Pol1,3Andrew M. Allen3,4Mitzi Jans1Bruno J. Ens3,5Karen L. Krijgsveld6Magali Frauendorf1,3Henk-Jan van der Kolk1,3
Department of Animal Ecology, Netherlands Institute of Ecology, 6708PB Wageningen, The Netherlands
Resource Ecology Group, Wageningen University & Research, 6708PB Wageningen, The Netherlands
Centre for Avian Population Studies, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
Department of Animal Ecology and Physiology, Radboud University, 6500GL Nijmegen, The Netherlands
Sovon-Texel, Sovon Dutch Centre for Field Ornithology, 1790AB Den Burg, The Netherlands
Nature Bureau, Royal Netherlands Air Force, 4820BB Breda, The Netherlands
Show Author Information

Abstract

Background

Anthropogenic disturbance can negatively affect an animal's energy budget by evoking movement responses. Existing research focuses mainly on immediate displacement as a disturbance effect, since this can be easily observed in the field. However, effects on movement over longer timescales are poorly examined and it is largely unknown if and to what extent they reflect immediate responses. Longer-term responses could for example be larger than immediate responses if birds, after disturbance, return to the original location and thereby travel twice the immediate disturbed distance.

Methods

We combined GPS tracking data with observational data to quantify the effects of anthropogenic (air force and walkers) and non-anthropogenic disturbances on distances travelled by roosting Eurasian Oystercatchers (Haematopus ostralegus) during the non-breeding season. We compared immediate displacement after a disturbance with distance travelled during the entire high tide period (longer-term response), while accounting for environmental factors. Additionally, we calculated energy expenditure due to disturbance based on observed disturbance frequencies.

Results

Disturbance resulted in an immediate displacement response of~200 m (median). Air force disturbances tended to yield larger immediate responses than walker and, especially, than non-anthropogenic disturbances. Longer-term responses and immediate responses were approximately similar, suggesting that, over longer timescales, spatial disturbance effects in the study area remain confined to immediate effects. However, disturbances were infrequent (0.17 disturbances per bird per hour) and most disturbances were of natural origin (62%). Consequently, anthropogenic disturbance of roosting oystercatchers in the study area on average costs 0.08% of the daily energy expenditure.

Conclusions

Our results suggest that immediate spatial responses to disturbance can be a useful proxy for spatial responses over longer timescales. Over the non-exhaustive range of conditions investigated, energetic consequences of spatial disturbance responses for an oystercatcher in the study area are marginal due to low disturbance levels.

References

 

Ackerman JT, Takekawa JY, Kruse KL, Orthmeyer DL, Yee JL, Ely CR, et al. Using radiotelemetry to monitor cardiac response of free-living tule greater white-fronted geese (Anser albifrons elgasi) to human disturbance. Wilson J Ornithol. 2004;116:146-51.

 

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1-48.

 

Beale CM, Monaghan P. Behavioural responses to human disturbance: a matter of choice? Anim Behav. 2004;68:1065-9.

 
Bjarnason JB, Günther W, Revier H. Tourism. In: Kloepper S, et al., editors. Wadden Sea quality status report 2017. Wilhelmshaven, Germany: CWSS; 2017.
 
Blew J, Günther K, Hälterlein B, Kleefstra R, Laursen K, Scheiffarth G. Trends of migratory and wintering waterbirds in the Wadden Sea 1987/1988-2013/2014. Wadden Sea Ecosystem No. 37. Wilhelmshaven, Germany: CWSS; 2016.
 
Blew J, Gunther K, Halterlein B, Kleefstra R, Laursen K, Ludwig J, et al. Migratory birds. In: Kloepper S, et al., editors. Wadden Sea quality status report 2017. Wilhelmshaven: CWSS; 2017.
 

Blumstein DT, Fernández-Juricic E, Zollner PA, Garity SC. Inter-specific variation in avian responses to human disturbance. J Appl Ecol. 2005;42:943-53.

 
Bouten W, Ens BJ. Effecten van vliegoefeningen op de Vliehors: kansen voor een planningsinstrument om de verstoring van vogels te minimaliseren. SOVON-rapport 2006/08. Nijmegen: Sovon; 2006.
 

Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KC. A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol. 2013;154:571-80.

 
Brandt AC, Wollesen A. Tourism and Recreation. Thematic Report No. 3.4. In: Marencic H, de Vlas J, editors. Wadden Sea quality status report 2009. Wadden Sea Ecosystem No. 25. CWSS: Wilhelmshaven; 2009.
 

Collop C, Stillman RA, Garbutt A, Yates MG, Rispin E, Yates T. Variability in the area, energy and time costs of wintering waders responding to disturbance. Ibis. 2016;158:711-25.

 
Dinno A. dunn.test: Dunn's test of multiple comparisons using rank sums. R package version 1.3.5; 2017.
 

Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52-64.

 

Finney SK, Pearce-Higgins JW, Yalden DW. The effect of recreational disturbance on an upland breeding bird, the golden plover Pluvialis apricaria. Biol Conserv. 2005;121:53-63.

 

Fitzpatrick S, Bouchez B. Effects of recreational disturbance on the foraging behaviour of waders on a rocky beach. Bird Study. 1998;45:157-71.

 

Gill JA. Approaches to measuring the effects of human disturbance on birds. Ibis. 2007;149(s1):9-14.

 

Gill JA, Sutherland WJ, Watkinson AR. A method to quantify the effects of human disturbance on animal populations. J Appl Ecol. 1996;33:786-92.

 

Gill JA, Norris K, Sutherland WJ. Why behavioural responses may not reflect the population consequences of human disturbance. Biol Conserv. 2001;97:265-8.

 

Glover HK, Weston MA, Maguire GS, Miller KK, Christie BA. Towards ecologically meaningful and socially acceptable buffers: response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc Urban Plan. 2011;103:326-34.

 

Goss-Custard JD, Triplet P, Sueur F, West AD. Critical thresholds of disturbance by people and raptors in foraging wading birds. Biol Conserv. 2006;127:88-97.

 
Hijmans RJ. Geosphere: spherical trigonometry. R package version 1.5-7; 2017.
 
Hofstede J, Hähne K, Oost A, Piontkowitz T, Raagaard K, Schans H, et al. Human activities. In: Essink K, Dettmann C, Frake H, Laursen K, Lüerẞen G, Wiersinga WA, editors. Wadden Sea quality status report 2004. Wadden Sea Ecosystem No. 19. CWSS: Wilhelmshaven; 2005. p. 27-74.
 

Kirby JS, Clee C, Seager V. Impact and extent of recreational disturbance to wader roosts on the Dee estuary: some preliminary results. Wader Study Group Bull. 1993;68:53-8.

 

Klein ML, Humphrey SR, Percival HF. Effects of ecotourism on distribution of waterbirds in a wildlife refuge. Conserv Biol. 1995;9:1454-65.

 
KNMI. Klimatologie: Informatie over Het Weer in het Verleden. De Bilt, Netherlands. 2018. http://projects.knmi.nl/klimatologie. Accessed 1 Feb 2018.
 
Koffijberg K, Blew J, Eskildsen K, Günther K, Koks B, Laursen K, et al. High tide roosts in the Wadden Sea: a review of bird distribution, protection regimes and potential sources of anthropogenic disturbance. Wadden Sea Ecosystem No. 16. CWSS: Wilhelmshaven; 2003.
 
Koffijberg K, Dijksen L, Hälterlein B, Laursen K, Potel P, Südbeck P, et al. Birds. In: Essink K, Dettmann C, Frake H, Laursen K, Lüerẞen G, Wiersinga WA, editors. Wadden Sea quality status report 2004. Wadden Sea Ecosystem No. 19. CWSS: Wilhelmshaven; 2005. p. 273-304.
 
Koffijberg K, Cremer JSM, de Boer P, Nienhuis J, Schekkerman H, Oosterbeek K, et al. Broedsucces van kustbroedvogels in de Waddenzee: Resultaten 2015-2016 en trends in broedsucces in 2005-2016. SOVON-rapport 2017/66. Sovon: Nijmegen; 2017.https://doi.org/10.18174/428641
 

Laursen K, Kahlert J, Frikke J. Factors affecting escape distances of staging waterbirds. Wildlife Biol. 2005;11:13-9.

 
Laursen K, Blew J, Ens B, Eskilden K, Günther K, Hälterlein B, et al. Migratory birds. In: Marencic H, de Vlas J, editors. Wadden Sea quality status report 2009. Wadden Sea Ecosystem No. 25. CWSS: Wilhelmshaven; 2009.
 

Lord A, Waas JR, Innes J, Whittingham MJ. Effects of human approaches to nests of northern New Zealand dotterels. Biol Conserv. 2001;98:233-40.

 

Martín B, Delgado S, Cruz A, Tirado S, Ferrer M. Effects of human presence on the long-term trends of migrant and resident shorebirds: evidence of local population declines. Anim Conserv. 2014;18:73-81.

 

Nisbet IC. Disturbance, habituation, and management of waterbird colonies. Waterbirds. 2000;23:312-32.

 

Pennycuick CJ. Bird flight performance: a practical calculation manual. Oxford: Oxford University Press; 1989.

 
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
 
Rappoldt C, Roosenschoon OR, van Kraalingen DWG. InterTides, maps of the intertidal by interpolation of tidal gauge data. EcoCurves-rapport 19, Haren: EcoCurves BV; 2014.
 
Reineking B, Sudbeck P. Seriously declining trends in migratory waterbirds: causes—concerns—consequences. In: Proceedings of the international workshop on 31 August 2006 in Wilhelmshaven, Germany. Wadden Sea Ecosystem No. 23. CWSS: Wilhelmshaven; 2007.
 
Rijkswaterstaat. Directorate-general for public works and water management, Utrecht, Netherlands. 2018. http://waterinfo.rws.nl. Accessed 10 Jan 2018.
 
Sefick Jr S. Stream metabolism: a package for calculating single station metabolism from diurnal oxygen curves. R package version 1.1.2; 2016.
 
Smit CJ. Vervolgonderzoek naar de gevolgen van de uitbreiding van het aantal vliegbewegingen van Den Helder Airport. Alterra-rapport No. 1025. Wageningen, Netherlands: Alterra; 2004.
 

Smit CJ, Visser GJ. Effects of disturbance on shorebirds: a summary of existing knowledge from the Dutch Wadden Sea and Delta. Wader Study Group Bull. 1993;68:6-19.

 
Spaans B, Bruinzeel L, Smit CJ. Effecten van verstoring door mensen op wadvogels in de Waddenzee en de Oosterschelde. IBN-rapport No. 202. Instituut voor Bos- en Natuuronderzoek: Den Burg; 1996.
 

Stillman RA, Goss-Custard JD. Seasonal changes in the response of oystercatchers Haematopus ostralegus to human disturbance. J Avian Biol. 2002;33:358-65.

 
Teunissen WA. De uitstralingseffecten van geluidsproduktie van de militaire 25 mm schietbaan in de Marnewaard op plaatskeuze en gedrag van watervogels in het Lauwersmeergebied binnendijks. RIN-rapport No. 91/2. Rijksinstituut voor Natuurbeheer: Arnhem; 1991.
 

Thaxter CB, Ross-Smith VH, Clark JA, Clark NA, Conway GJ, Marsh M, et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ring Migrat. 2014;29:65-76.

 
van de Kam J, Ens BJ, Piersma T, Zwarts L. Ecologische atlas van de Nederlandse wadvogels. Haarlem: Schuyt & Co.; 1999.
 

van de Pol M, Atkinson P, Blew J, Crowe O, Delany S, Duriez O, et al. A global assessment of the conservation status of the nominate subspecies of Eurasian oystercatcher Haematopus ostralegus ostralegus. Int Wader Stud. 2014;20:47-61.

 
van Roomen M, van Turnhout C, Blew J, Koffijberg K, Nagy S, Citegetse G, et al. East Atlantic flyway. In: Kloepper S, et al., editors. Wadden sea quality status report 2017. Wilhelmshaven: CWSS; 2017.
 

Verhulst S, Oosterbeek K, Ens BJ. Experimental evidence for effects of human disturbance on foraging and parental care in oystercatchers. Biol Conserv. 2001;101:375-80.

 

Walker BG, Boersma PD, Wingfield JC. Field endocrinology and conservation biology. Integr Comp Biol. 2005;45:12-8.

 

Zwarts L, Ens BJ, Goss-Custard JD, Hulscher JB, Kersten M. Why oystercatchers Haematopus ostralegus cannot meet their daily energy requirements in a single low water period. ARDEA. 1996;84A:269-90.

Avian Research
Article number: 31
Cite this article:
Linssen H, van de Pol M, Allen AM, et al. Disturbance increases high tide travel distance of a roosting shorebird but only marginally affects daily energy expenditure. Avian Research, 2019, 10(1): 31. https://doi.org/10.1186/s40657-019-0171-8

529

Views

15

Downloads

8

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 21 December 2018
Accepted: 15 August 2019
Published: 22 August 2019
© The Author(s) 2019.

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Return