AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Occupancy of avian foraging guilds in soybean fields and borders in Entre Ríos, Argentina: responses to vegetation structure and prey resources

Andrea P. Goijman1,2( )Michael J. Conroy2,3Vanina D. Varni1,4Jeffrey J. Thompson1,5,6,7María Elena Zaccagnini1,8
Instituto de Recursos Biológicos, CIRN, Instituto Nacional de Tecnología Agropecuaria (CNIA-INTA), Hurlingham, Buenos Aires, Argentina
D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
Present Address: Athens, GA, USA
Present Address: Laboratorio de Genómica Ecológica y Evolutiva, Irapuato, Gto, México
Present Address: Guyra Paraguay-CONACYT, Av. Cnel. Carlos Bóveda, Parque Ecológico Capital-Viñas Cué, Asunción, Paraguay
Present Address: Instituto Saite, Asunción, Paraguay
Present Address: The Ronin Institute, Montclair, NJ, USA
Present Address: Instituto Nacional de Tecnología Agropecuaria (INTA), CABA, Argentina
Show Author Information

Abstract

Background

Reconciling agriculture and biodiversity conservation is a challenge given the growing demand for agricultural products. In recent decades, Argentina has witnessed agricultural expansion and intensification affecting biodiversity and associated ecosystem services. Within agroecosystems, the level of habitat quality is critical for birds, and may depend on vegetation structure, availability of invertebrate prey, and the use of pesticides. Although the relationship between vegetation structure and avian occurrence has been widely studied, to our knowledge, there are no studies that also incorporate prey availability throughout the cycle of soybean crops in Argentina. We estimated and predicted the effects of land cover and temporal variation on the occurrence of avian foraging guilds in Entre Ríos, Argentina, in order to guide management related to potential ecosystem services provided by birds. We also estimated temporal effects of vegetation structure and insecticides on the main arthropod orders consumed by birds to evaluate prey availability.

Methods

We conducted bird and arthropod surveys for 2 years along transects located in 20 randomly selected soybean fields (N=60) and their adjacent borders (N=78) throughout the crop growing season, in four seasons. We estimated avian occupancy, accounting for imperfect detection, and arthropod counts fitting generalized linear mixed models.

Results

The number of native trees in field borders positively influenced the occurrence of most bird species, mainly insectivores. Granivore foliage gleaners, also were positively affected by grass height. Salliers and aerial foragers were weakly affected by distance to forest and native trees. In general, the availability of invertebrates to birds was highest during the third season. Arthropod counts in borders were greater during the last three crop stages than during the pre-sowing period.

Conclusions

We found that with 10 to 15 native tree species in borders, coupled with a complex vegetation structure with shrubs and grasses, we could conserve a wide spectrum of insectivorous birds, and may contribute to the invertebrate pest control service. Vegetated field borders function as a refuge for arthropods, especially agriculturally beneficial taxa such as Hymenopterans. Finally, several groups of birds use the interior of the fields and could help control pests.

References

 
Alessio VG, Beltzer AH, Lajmanovich RC, Quiroga M. Ecología alimentaria de algunas especies de Passeriformes (Furnariidae, Tyrannidae, Icteridae y Emberizidae): Consideraciones sobre algunos aspectos del nicho ecológico. In: Aceñolaza FG, editor. Temas de la biodiversidad del Litoral Fluvial Argentino II. Tucumán: Ediciones Magna; 2005. p. 441–82.
 

Avalos DS, Mangeaud A, Valladares GR. Parasitism and food web structure in defoliating Lepidoptera— parasitoid communities on soybean. Neotrop Entomol. 2016; 45: 712–7.

 
Azpiroz AB. Aves del Uruguay: Lista e introducción a su biología y conservación. Montevideo: Aves Uruguay-GUPECA; 2001.
 

Bates DM, Maechler M, Bolker M, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015; 67: 1–48.

 

Beltramo J, Bertolaccini I, González A. Spiders of soybean crops in Santa Fe province, Argentina: influence of surrounding spontaneous vegetation on lot colonization. Braz J Biol. 2006; 66: 891–8.

 
Beltzer AH. Aspectos tróficos de la comunidad de aves de los esteros del Iberá. In: Alvarez BB, editor. Fauna del Iberá. Chaco-Corrientes: Universidad Nacional del Nordeste; 2003. p. 257–71.
 
Benton TG, Vickery JA, Wilson JD. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol. 2003; 18: 182–8.https://doi.org/10.1016/S0169-5347(03)00011-9
 
Bernardos JN, Zaccagnini ME, Mineau P, Decarre J, De Carli R. Calculadora de riesgo ecotoxicológico para aves: Sistema soporte de decisiones para el control de plagas con criterios ambientales 3.0. Buenos Aires: INTA; 2007.
 
Bibby CJ, Burgess ND, Hill DA, Mustoe SH. Bird census techniques. London: Academic Press; 2000.
 
BirdLife International. IUCN Red List for birds. 2013. https://www.birdlife.org. Accessed 30 Aug 2013.
 
Bortoluzzi A, Aceñolaza P, Aceñolaza F. Caracterización ambiental de la cuenca del arroyo las conchas, provincia de Entre Ríos. In: Aceñolaza FG, editor. Temas de la biodiversidad del litoral fluvial Argentino III. Serie Miscelanea 17. Tucumán: Instituto Superior de Correlacion Geologica; 2008. p. 219–30.
 

Boutin C, Freemark KE, Kirk DA. Farmland birds in southern Ontario: field use, activity patterns and vulnerability to pesticide use. Agric Ecosyst Environ. 1999; 72: 239–54.

 

Boutin C, Jobin B. Intensity of agricultural practices and effects on adjacent habitats. Ecol Appl. 1998; 8: 544–57.

 
Bucher EH. The influence of changes in regional land-use patterns on Zenaida Dove populations. In: Pinowsky J, Summers-Smith JD, editors. Granivorous birds in agricultural landscapes. Warsaw: Polish Academy of Sciences; 1990. p. 291–303.
 
Burkart R, Bárbaro NO, Sánchez RO, Gómez DA. Eco-regiones de la Argentina. Buenos Aires: Secretaría de Recursos Naturales y Desarrollo Sustentable, Administracion de Parques Nacionales; 1999.
 
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edn. New York: Springer; 2002.
 

Cabrera A. Fitogeografía de la República Argentina. Bol Soc Argent Bot. 1971; 14: 1–43.

 

Calamari NC, Cerezo Blandón A, Canavelli SB, Dardanelli S, Gavier-Pizarro GI, Zaccagnini ME. Long-term association of Tyrannus savana and Sturnella superciliaris density with land cover and climatic variables in agroecosystems of Argentina. EI Hornero. 2016; 31: 97–112.

 

Calamari NC, Canavelli SB, Cerezo A, Dardanelli S, Bernardos JN, Zaccagnini ME. Variations in pest bird density in Argentinean agroecosystems in relation to land use and/or cover, vegetation productivity and climate. Wildlife Res. 2018; 45: 668–78.

 

Calamari NC, Vilella FJ, Sica YV, Mercuri PA. Patch and landscape responses of bird abundance to fragmentation in agroecosystems of east-central Argentina. Avian Conserv Ecol. 2018; 13: 3.

 
Capinera J. Insects and wildlife: arthropods and their relationships with wild vertebrate animals. Hoboken: Wiley-Blackwell; 2010.https://doi.org/10.1002/9781444317688
 

Champlin TB, Kilgo JC, Moorman CE. Food abundance does not determine bird use of early-successional habitat. Ecology. 2009; 90: 1586–94.

 

Codesido M, Fischer CG, Bilenca D. Land use patterns and bird assemblages in agroecosystems of the Pampean Region, Argentina. Ornitol Neotrop. 2008; 19: 575–85.

 
Cooch EG, White GC. Program MARK: a gentle introduction, 12th edn. Colorado State University. 2013. https://www.phidot.org/software/mark/docs/book/. Accessed 17 Feb 2013.
 
De la Peña MR. Reproducción de las aves Argentinas, con descripción de pichones. Buenos Aires: Monografía LOLA; 2005.
 
De la Peña MR. Lista distribución aves Santa Fe Entre Ríos. Buenos Aires: Monografía LOLA; 2006.
 

Di Giacomo AS, de Casenave JL. Use and importance of crop and field-margin habitats for birds in a neotropical agricultural ecosystem. Condor. 2010; 112: 283–93.

 

Donald PF, Sanderson FJ, Burfield IJ, Van Bommel FPJ. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ. 2006; 116: 189–96.

 

Douglas DJT, Vickery JA, Benton TG. Improving the value of field margins as foraging habitat for farmland birds. J Appl Ecol. 2009; 46: 353–62.

 

Duelli P, Studer M, Marchand I, Jakob S. Population movements of arthropods between natural and cultivated areas. Biol Conserv. 1990; 54: 193–207.

 

Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X. Analysis of aggregation, a worked example: numbers of ticks on Red Grouse chicks. Parasitology. 2001; 122: 563–9.

 
FAOSTAT. Commodities by country 2011: soybeans. 2013. https://faostat.fao.org. Accessed 18 June 2013.
 

Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, et al. Solutions for a cultivated planet. Nature. 2011; 478: 337–42.

 

Freemark K, Boutin C. Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agric Ecosyst Environ. 1995; 52: 67–91.

 

Gavier-Pizarro GI, Calamari NC, Thompson JJ, Canavelli SB, Solari LM, Decarre J, et al. Expansion and intensification of row crop agriculture in the Pampas and Espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric Ecosyst Environ. 2012; 154: 44–55.

 

Goijman AP, Conroy MJ, Bernardos JN, Zaccagnini ME. Multi-season regional analysis of multi-species occupancy: implications for bird conservation in agricultural lands in east-central Argentina. PLoS ONE. 2015; 10: e0130874.

 

Goijman AP, Zaccagnini ME. The effects of habitat heterogeneity on avian density and richness in soybean fields in Entre Ríos, Argentina. Hornero. 2008; 23: 67–76.

 

Goldstein MI, Lacher TE, Woodbridge B, Bechard MJ, Canavelli SB, Zaccagnini ME, et al. Monocrotophos-induced mass mortality of Swainson's Hawks in Argentina, 1995–96. Ecotoxicology. 1999; 8: 201–14.

 

Grass I, Lehmann K, Thies C, Tscharntke T. Insectivorous birds disrupt biological control of cereal aphids. Ecology. 2017; 98: 1583–90.

 
Hill RW. Fisiología comparada comparada: un enfoque ambiental. Barcelona: Reverté; 1980.
 

Jobin B, Choiniere L, Belanger L. Bird use of three types of field margins in relation to intensive agriculture in Quebec, Canada. Agric Ecosyst Environ. 2001; 84: 131–43.

 
Kirk DA, Eveden MD, Mineau P. Past and current attempts to evaluate the role of birds as predators of insect pests in temperate agriculture. In: Nolan V, Ketterson ED, editors. Current ornithology. New York: Plenum Press; 1996. p. 175–269.https://doi.org/10.1007/978-1-4615-5881-1_5
 
Kirk DA, Park AC, Smith AC, Howes BJ, Prouse BK, Kyssa NG, et al. Our use, misuse and abandonment of a concept: whither habitat? Ecol Evol. 2018; 00: 1–12.https://doi.org/10.1002/ece3.3812
 
Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM. The second silent spring? Nature. 1999; 400: 611–2.https://doi.org/10.1038/23127
 

Kross SM, Kelsey TR, McColl CJ, Townsend JM. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric Ecosyst Environ. 2016; 225: 140–9.

 
Laake JL. RMark: an R interface for analysis of capture-recapture data with MARK. Seattle: Alaska Fisheries Science Center, NOAA, National Marine Fisheries Service; 2013.
 

Lee JC, Menalled FD, Landis DA. Refuge habitats modify impact of insecticide disturbance on carabid beetle communities. J Appl Ecol. 2001; 38: 472–83.

 

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002; 83: 2248–55.

 
MacKenzie DI, Nichols JD, Royle AR, Pollock KH, Bailey LL, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Burlington: Elsevier/Academic Press; 2006.
 
MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey L, Hines JE. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. New York: Academic Press; 2017.https://doi.org/10.1016/B978-0-12-407197-1.00019-3
 

Mineau P. Estimating the probability of bird mortality from pesticide sprays on the basis of the field study record. Environ Toxicol Chem. 2002; 21: 1497–506.

 

Moorman CE, Bowen LT, Kilgo JC, Sorenson CE, Hanula JL, Horn S, et al. Seasonal diets of insectivorous birds using canopy gaps in a bottomland forest. J Field Ornithol. 2007; 78: 11–20.

 
Narosky S, Yzurieta D. Aves de Argentina y Uruguay: Guía de identificación, edición total. Buenos Aires: Vázquez Mazzini Editores; 2010.
 

Paruelo JM, Guerschman JP, Verón SR. Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy. 2005; 15: 14–23.

 

Philpott SM, Soong O, Lowenstein JH, Pulido AL, Lopez DT, Flynn DFB, et al. Functional richness and ecosystem services: bird predation on arthropods in tropical agroecosystems. Ecol Appl. 2009; 19: 1858–67.

 
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
 
Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF, Milá B. Handbook of field methods for monitoring landbirds. Albany: USDA Forest Service General Technical Report PSW-GTR-159; 1996.
 

Remsen JV Jr, Robinson SK. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud Avian Biol. 1990; 13: 144–60.

 

Robinson RA, Wilson JD, Crick HQP. The importance of arable habitat for farmland birds in grassland landscapes. J Appl Ecol. 2001; 38: 1059–69.

 

Saluso A, Ermancora O, Anglada M, Toledo C, Borghesan C. Principales invertebrados plagas de la soja y tecnicas utilizadas en la toma de decisiones (Campaña agrícola 2006–2007). Rev Cient Agropecu. 2007; 11: 153–8.

 
SIIA. Estimaciones Agrícolas. Datos de la Dirección de Mercados Agrícolas. 2013. https://siia.gov.ar. Accessed 7 Feb 2013.
 

Solari LM, Zaccagnini ME. Efecto de bordes arboreos y terrazas sobre la riqueza y densidad de aves en lotes de soja de Entre Rios, Argentina. BioScriba. 2009; 2: 90–100.

 

Stamps WT, Dailey TV, Gruenhagen NM, Linit MJ. Soybean yield and resource conservation field borders. Agric Ecosyst Environ. 2008; 124: 142–6.

 

Standen V. The adequacy of collecting techniques for estimating species richness of grassland invertebrates. J App Ecol. 2000; 37: 884–93.

 

Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv. 2012; 151: 53–9.

 

Tyre AJ, Tenhumberg B, Field SA, Niejalke D, Parris K, Possingham HP. Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol Appl. 2003; 13: 1790–801.

 
Varni VD. Efecto de la aplicación de insecticidas sobre artrópodos fitófagos y predadores en cultivos de soja y sus márgenes en Entre Ríos. Buenos Aires: Licenciate Thesis, Universidad de Buenos Aires; 2010.
 

Weyland F, Zaccagnini ME. Efecto de las terrazas sobre la diversidad de artrópodos caminadores en cultivos de soja. Ecol Aust. 2008; 18: 357–66.

 
Whelan CJ, Şekercioğlu CH, Wenny DG. Bird ecosystem services: economic ornithology for the 21st century. In: Şekercioğlu CH, Wenny DG, Whelan CJ, editors. Why birds matter: avian ecological function and ecosystem services. Chicago: University of Chicago Press; 2016. p. 1–26.https://doi.org/10.7208/chicago/9780226382777.003.0001
 

Whelan CJ, Wenny DG, Marquise RJ. Ecosystem services provided by birds. Conserv Biol. 2008; 1134: 25–60.

 

White GC, Burnham KP. Program MARK: Survival estimation from populations of marked animals. Bird Study. 1999; 46: 120–39.

 

Wiens JA, Rotenberry JT. Habitat associations of shrubsteppe bird communities. Bioscience. 1981; 31: 240–1.

 
Wolda H. Insect seasonality: why? Rev Ecol Syst. 1988; 19: 1–18.https://doi.org/10.1146/annurev.es.19.110188.000245
 

Zufiaurre E, Codesido M, Abba AM, Bilenca D. The seasonal role of field characteristics on seed-eating bird abundances in agricultural landscapes. Curr Zool. 2017; 63: 279–86.

Avian Research
Article number: 48
Cite this article:
Goijman AP, Conroy MJ, Varni VD, et al. Occupancy of avian foraging guilds in soybean fields and borders in Entre Ríos, Argentina: responses to vegetation structure and prey resources. Avian Research, 2020, 11(1): 48. https://doi.org/10.1186/s40657-020-00235-4

858

Views

16

Downloads

2

Crossref

N/A

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 17 April 2020
Accepted: 09 November 2020
Published: 07 December 2020
© The Author(s) 2020.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return