AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Masting effect on alpha and beta avian diversity in fragmented forests of relict-endangered Mexican Beech (Fagus grandifolia subsp. mexicana)

Ernesto C. Rodríguez-Ramírez1Levinn Camacho-Islas1Ana Paola Martínez-Falcón2Isolda Luna-Vega1Pilar Carbó-Ramírez3,4 ( )
Laboratorio de Dendrocronología, Universidad Continental, Huancayo, Perú
Laboratorio de Biogeografía y Sistemática, Universidad Nacional Autonoma de México, Ciudad de México, Mexico
Centro de Investigaciones Biológicas, Universidad Autónoma de Estado de Hidalgo, Hidalgo, Mexico
Independent Researcher, Oulu, Finland
Show Author Information

Abstract

Background

Tropical montane cloud forests are one of the most important hotspots on Earth and show presence of relict-endemic and endangered species, representing about 14% of the total tropical forest worldwide. Synchronous seed production or masting in tropical montane cloud tree species is a widespread reproductive strategy of deciduous and evergreen broad-leaved tree associations to decrease costs of reproduction and ensure offspring. Masting event maintains a high avian diversity, which can be modified by phenological process (seed production and non-seed production).

Methods

The main aim of this study was to assess alpha and beta avian diversity and whether the composition of the trophic guild modifies among phenological processes and between two fragmented relict-endangered Mexican Beech (Fagus grandifolia subsp. mexicana) forests (Medio Monte and El Gosco) in the Mexican state of Hidalgo. In addition, we evaluated beechnut production.

Results

We recorded 36 bird species, 11 of them included in some conservation risk status, and 5 endemic species. Alpha diversity values were dissimilar in avian richness (q=0) among phenological processes and between fragmented beech forests. Avian communities among three phenological processes and between fragmented forests were structurally similar, dominated during immature seeds the Brown-backed Solitaire (granivores–insectivores–frugivores); during mature seeds the White-crowned Parrot (Pionus senilis, granivores–frugivores); and the Dwarf Jay (Cyanolyca nana, insectivores) was abundant during low seed quality. The complementarity index was high among phenological processes and low between forests. We found a high bird turnover value between immature seeds—mature seeds and during mature seeds—low seed quality. Furthermore, a similar pattern was recorded between the two study forests. Seed production showed a high number of undamaged beechnuts in Medio Monte, while in El Gosco beechnuts were attacked by insects.

Conclusions

Our results reflect that masting phenological process and contrasting study forests' structure influence the shifts in alpha and beta diversity of seed and non-seed bird consumers. Our study reaffirms the importance of continuing studies throughout masting in all the Mexican Beech forests to address regional efforts in preserving the relict-ecological interactions.

References

 

Amico GC, Aizen MA. Dispersión de semillas por aves en un bosque templado de Sudamérica austral: ¿quién dispersa a quién? Ecol Aust. 2005;15: 89-100.

 

Baselga A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr. 2010;19: 134-43.

 
Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS. Birds of the world. Cornell Lab Ornithology. 2020. https://birdsoftheworld.org/bow/home.https://doi.org/10.2173/bow
 

Bogdziewicz M, Kelly D, Thomas PA, Lageard JGA, Hacket-Pain A. Climate warming disrupts mast seeding and its fitness benefits in European Beech. Nat Plants. 2020;6: 88-94.

 

Burns KC. Masting in a temperate tree: evidence for environmental prediction? Austral Ecol. 2012;37: 175-82.

 

Calderón-Patrón JM, Goyenechea I, Ortiz-Pulido R, Castillo-Cerón J, Manriquez N, Ramírez-Bautista A, et al. Beta diversity in a highly heterogeneous area: disentangling species and taxonomic dissimilarity for terrestrial vertebrates. PLoS ONE. 2016;11: e0160438.

 

Carvalho JC, Cardoso P, Gomes P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecol Biogeogr. 2012;21: 760-71.

 

Carvalho JC, Cardoso P, Borges PAV, Schmera D, Podani J. Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos. 2013;122: 825-34.

 

Chamberlain DE, Gosler AG, Glue DE. Effects of the winter beechmast crop on bird occurrence in British gardens. Bird Study. 2007;54: 120-6.

 

Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014;84: 45-67.

 

Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93: 2533-47.

 
Chesser RT, Burns KJ, Cicero C, Dunn JL, Kratter AW, Lovette IJ, et al. Check-list of North American birds. American Ornithological Society. 2019. http://checklist.aou.org/taxa.
 

Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18: 117-43.

 

Colwell RK, Coddington JA. Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond b. 1994;345: 101-18.

 

Darley-Hill S, Johnson WC. Acorn dispersal by the blue jay (Cyanocitta cristata). Oecologia. 1981;50: 231-2.

 

Ehnis DA. Fagus mexicana Martínez, su ecología e importancia. Doctoral Thesis. Mexico City: Universidad Autónoma de México; 1981.

 

Fletcher MS. Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol. 2015;216: 527-33.

 

Godínez-Ibarra O, Ángeles-Pérez G, López-Mata L, García-Moya E, Valdez-Hernández JI, de Los Santos-Posadas H, et al. Seed rain and seedling emergence of Fagus grandifolia subsp. mexicana at La Mojonera, Hidalgo. Mexico Rev Mex Biodiv. 2007;78: 117-28.

 

Grendelmeier A, Flade M, Pasinelli G. Trophic consequences of mast seeding for avian and mammalian seed and non-seed consumers in European temperate forests. J Ornithol. 2019;160: 641-53.

 
Gual-Díaz M, Rendón-Correa A. Bosques mesófilos de montaña de México diversidad, ecología y manejo. In: Gual-Díaz M, Rendón-Correa A, editors. Bosques mesófilos de montaña de México diversidad, ecología y manejo. 1st ed. Mexico: CONABIO; 2014. p. 27-67.
 

Guiry EJ, Orchard TJ, Royle TCA, Cheung C, Yang DY. Dietary plasticity and the extinction of the passenger pigeon (Ectopistes migratorius). Quaternary Sci Rev. 2020;233: 106225.

 

Hagen M, Kissling WD, Rasmussen C, de Aguiar MA, Brown LE, Carstensen DW, et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv Ecol Res. 2012;46: 89-210.

 

Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54: 427-32.

 

Howell SNG, Webb S. A guide to the birds of Mexico and northern central America. England: Oxford University Press; 1995.

 

Hu J, Riveros-Iregui DA. Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia. 2016;180: 1061-73.

 

Jansen PA, Bongers F, Hemerik L. Seed mass and mast seeding enhance dispersal by a Neotropical scatter-hoarding rodent. Ecological Monographs Ecol Soc Am. 2004;74: 569-89.

 

Jensen TS. Seed-seed predator interactions of European Beech, Fagus sylvatica and forest rodents, Clethrionomys glareolus and Apodemus flavicollis. Oikos. 1985;44: 149-56.

 

Jost L. Entropy and diversity. Oikos. 2006;113: 363-75.

 

Kardell L. Bokens spridning I Trogds harad. Sartryck Ur Lustgarden. 2005;85: 29-44.

 

Kelly D. The evolutionary ecology of mast seeding. Trends Ecol Evol. 1994;9: 465-70.

 

Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15: 259-63.

 

Loreau M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos. 2000;91: 3-17.

 

Luna-Vega I, Alcántara-Ayala O, Morrone JJ, Espinosa-Organista D. Track analysis and conservation priorities in the cloud forests of Hidalgo. Mexico Divers Distrib. 2000;6: 137-43.

 

Magurran AE. Measuring biological diversity. Malden, MA: Blackwell Science Ltd.; 2004.

 

Martínez-Morales MA. Nested species assemblages as a tool to detect sensitivity to forest fragmentation: the case of cloud forest birds. Oikos. 2005;108: 634-42.

 

Martínez-Morales MA. Avifauna del bosque mesófilo de montaña del noreste de Hidalgo. México Rev Mex Biodiv. 2007;78: 149-62.

 

Mentil L, Battisti C, Maria CG. The older the richer: significant increase in breeding bird diversity along an age gradient of different coppiced woods. Web Ecol. 2018;18: 143-51.

 
Mulligan M. Modelling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. In: Bruijnzeel LA, Scatena FN, Hamilton LS, editors. Tropical montane cloud forests: science for conservation and management. Cambridge: Cambridge University Press; 2010. p. 14-38.https://doi.org/10.1017/CBO9780511778384.004
 

Muñoz-Villers LE, López-Blanco J. Land use/cover changes using Landsat TM/ETM images in a tropical and biodiverse mountainous area of central eastern Mexico. Int J Remote Sens. 2008;29: 71-93.

 

National Geographic Society. Field guide to the birds of North America. Washington: National Geographic Society; 2006.

 

Navarro-Sigüenza AG, Rebón-Gallardo MF, Gordillo-Martínez A, Peterson AT, Berlanga- García H, Sánchez-González LA. Biodiversity of birds in Mexico. Rev Mex Biodiv. 2014;85: 476-95.

 

Nilsson SG. Ecological and evolutionary interactions between reproduction of beech Fagus sylvatica and seed eating animals. Oikos. 1985;44: 157-64.

 
Oksanen J, Guillaume-Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.
 

Olvera-Vital A, Rebón-Gallardo MF, Navarro-Sigüenza AG. Bird diversity and taxonomic turnover in the different habitats in Misantla, Veracruz, Mexico: species comparison over time. Rev Mex Biodiv. 2020;91: e913070.

 

Pearse IS, Koenig WD, Kelly D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 2016;212: 546-62.

 

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11: 1633-44.

 

Perdeck AC, Visser ME, van Balen JH. Great tit Parus major survival, and the beech-crop cycle. Ardea. 2000;88: 99-106.

 

Pérez-Rodríguez PM. Las hayas de México, monografía de Fagus grandifolia spp. mexicana. 1st ed. Texcoco: Universidad Autónoma de Chapingo; 1999.

 

Peterson TR, Edward FC. Aves de México: Guía de Campo, identificación de otras especies encontradas de México, Guatemala, Belice y El Salvador. Mexico City: Editorial Diana; 1989.

 

Podani J, Schmera D. A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. Oikos. 2011;120: 1625-38.

 

Ponce-Reyes R, Reynoso-Rosales VH, Watson JEM, VanDerWal J, Fuller RA, Pressey RL, et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim Change. 2012;2: 448-52.

 
R Core Team. R: a language and environment for statistical computing (version 3.4.3). R Foundation for Statistical Computing; 2018. https://www.r-project.org/.
 

Rahbek C, Borregaard MK, Colwell RK, Dalsgaard B, Holt BG, Morueta-Holme N, et al. Humboldty's enigma: what causes global patterns of mountain biodiversity? Science. 2019;365: 1108-13.

 

Ralph CJ, Geupel GR, Pyle P, Martin TE, DeSante DF, Milá B. Manual de métodos de campo para el monitoreo de aves terrestres. Albany: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture; 1996.

 

Reid N. Coevolution of mistletoes and frugivorous birds? Aust J Ecol. 1991;16: 457-69.

 

Rodríguez-Ramírez EC, Luna-Vega I, Rozas V. Tree-ring research of Mexican Beech (Fagus grandifolia subsp. mexicana) a relict tree endemic to eastern Mexico. Tree-Ring Res. 2018a;74: 94-107.

 

Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G. Relationship between vegetation structure and microenvironment in Fagus grandifolia subsp. mexicana forest relicts in Mexico. J Plant Ecol. 2018b;11: 237-47.

 

Rodríguez-Ramírez EC, Sánchez-González A, Ángeles-Pérez G. Current distribution and coverage of Mexican Beech forests Fagus grandifolia subsp. mexicana in Mexico. Endang Species Res. 2013;20: 205-16.

 

Rodríguez-Ramírez EC, Terrazas T, Luna-Vega I. The influence of climate on the masting behavior of Mexican Beech: growth rings and xylem anatomy. Trees. 2019;33: 23-35.

 

Rosemier JN, Flaspohler DJ. Island-specific ecological release of small mammals in Lake Michigan and potential consequences for ground-nesting birds: The importance of American Beech (Fagus grandifolia) in structuring small-mammal communities. George Wright Soc. 2006;23: 24-32.

 

Rueda-Hernandez R, MacGregor-Fors I, Renton K. Shifts in resident bird communities associated with cloud forest patch size in Central Veracruz. Mexico Avian Conserv Ecol. 2015;10: 2.

 
Roman L, Scatena FN, Bruijnzeel LA. Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS, editors. Tropical montane cloud forests: science for conservation and management. Cambridge: Cambridge University Press; 2010. p. 77-89.https://doi.org/10.1017/CBO9780511778384.008
 

Sánchez-González LA, Navarro-Sigüenza AG. History meets ecology: a geographical analysis of ecological restriction in the Neotropical humid montane forests avifaunas. Divers Distrib. 2009;15: 1-11.

 
SEMARNAT. SEMARNAT-Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial. 2010.
 

Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R. The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the cloud forest in eastern Mexico. Biodivers Conserv. 2006;15: 1095-107.

 

Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N. Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manage. 2011;92: 974-81.

 

Turcek F, Kelso L. Ecological aspects of food transportation and storage in the Corvidae. Commun Behav Biol Part a. 1968;1: 277-97.

 

van Perlo B. Birds of Mexico and Central America. Princeton: Princeton University Press; 2006.

 

Wells K, Böhm SM, Boch S, Fischer M, Kalko EKV. Local and landscape-scale forest attributes differ in their impact on bird assemblages across years in forest production landscapes. Basic Appl Ecol. 2011;12: 97-106.

 

Williams-Linera G, Rowden A, Newton AC. Distribution and stand characteristics of relict populations of Mexican Beech (Fagus grandifolia var. mexicana). Biol Conserv. 2003;109: 27-36.

 

Yasaka M, Terazawa K, Koyama H, Kon H. Masting behavior of Fagus crenata in northern Japan: spatial synchrony and pre-dispersal seed predation. Forest Ecol Manage. 2003;184: 277-84.

 
Yui M. Animals of beech forests. In: Murai H, Yamatani K, Kataoka H, Yui M, editors. Natural environment and its conservation on Buna (Fagus crenata) forest. Tokyo: Soft Science Inc.; 1991. p. 193-234 (in Japanese).
 
Zaccagnini ME, Thompson JJ, Bernardos JN, Calamari NC, Goijman AP, Canavelli SB. Riqueza, ocupación y roles funcionales potenciales de las aves en relación a los usos de la tierra y la productividad de los agroecosistemas: un ejemplo en la ecoregion pampeana. In: Laterra P, Jobbágy EG, Paruelo JM, editors. Valoración de servicios ecosistémicos: conceptos, herramientas y aplicaciones para el ordenamiento territorial. Chapter: 8. Buenos Aires: Ediciones inta. 2011. p. 185-219.
Avian Research
Article number: 49
Cite this article:
Rodríguez-Ramírez EC, Camacho-Islas L, Martínez-Falcón AP, et al. Masting effect on alpha and beta avian diversity in fragmented forests of relict-endangered Mexican Beech (Fagus grandifolia subsp. mexicana). Avian Research, 2021, 12(1): 49. https://doi.org/10.1186/s40657-021-00284-3

578

Views

15

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 March 2021
Accepted: 22 September 2021
Published: 04 October 2021
© The Author(s) 2021.

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return