AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

The gut microbiome and metabolome of Himalayan Griffons (Gyps himalayensis): insights into the adaptation to carrion-feeding habits in avian scavengers

Wen Wang1 ( )Xiaolong Gao2Sisi Zheng1Zhuoma Lancuo3Ying Li1Lilin Zhu4Jianping Hou5Jiayi Hai5Xin Long5Hanxi Chen5Alexey Druzyaka6Kirill Sharshov7 ( )
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, China
College of Agriculture and Animal Husbandry, Qinghai University, Xi'ning, 810016, China
College of Finance and Economics, Qinghai University, Xi'ning, 810016, China
Xining Wild Animal Epidemic Disease Monitoring Station, Xi'ning, 810001, China
College of Eco-Environmental Engineering, Qinghai University, Xi'ning, 810016, China
Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630091, Russia
Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia
Show Author Information

Abstract

Background

Himalayan Griffons (Gyps himalayensis), large scavenging raptors widely distributed in Qinghai-Tibetan Plateau, have evolved a remarkable ability to feed on carcasses without suffering any adverse effects. The gut microbiome plays an important role in animal physiological and pathological processes, and has also been found to play a health protective role in the vulture adaptation to scavenging. However, the microbial taxonomic diversity (including nonculturable and culturable microbes), functions, and metabolites related to Himalayan Griffons have not been fully explored.

Methods

In the present study, the 28 fecal samples of the Himalayan Griffons and 8 carrion samples were collected and sequenced using high-throughput 16S rRNA gene sequencing methods to analyze the composition and functional structures of the microbiomes. Twelve fecal samples of the Himalayan Griffons were analyzed using untargeted Liquid Chromatography Mass Spectroscopy (LC–MS) to identify metabolites. We used different culture conditions to grow Himalayan Griffons gut microbes. Inhibitory effects of gut beneficial bacteria on 5 common pathogenic bacteria were also tested using the Oxford cup method.

Results

According to the results of the culture-independent method, a high abundance of four major phyla in Himalayan Griffons were identified, including Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. The most abundant genera were Fusobacterium, followed by Clostridium_sensu_stricto_1, Cetobacterium, Epulopiscium, and Bacteroides. The predicted primary functional categories of the Himalayan Griffons' gut microbiome were associated with carbohydrate and amino acid metabolism, replication and repair, and membrane transport. LC–MS metabolomic analysis showed a total of 154 metabolites in all the fecal samples. Cultivation yielded 184 bacterial isolates with Escherichia coli, Enterococcus faecium, Enterococcus hirae, and Paeniclostridium sordellii as most common isolates. Moreover, 7 potential beneficial gut bacteria isolated showed certain inhibition to 5 common pathogenic bacteria.

Conclusions

Our findings broaden and deepen the understanding of Himalayan Griffons' gut microbiome, and highlighted the importance of gut microbiome-mediated adaptation to scavenging habits. In particular, our results highlighted the protective role of gut beneficial bacteria in the Himalayan Griffons against pathogenic bacteria that appear in rotten food resources.

References

 

Arroyo FA, Pawlowska TE, Choat JH, Clements KD, Angert ER. Recombination contributes to population diversification in the polyploid intestinal symbiont Epulopiscium sp. type B. ISME J. 2019;13: 1084-97.

 

Barnes A, Kaur A, Augenbraun M. An unusual presentation of prostatic abscess due to Actinomyces turicensis and Peptostreptococcus. Cureus. 2020;12: e8665.

 

Berry D. The emerging view of Firmicutes as key fibre degraders in the human gut. Environ Microbiol. 2016;18: 2081-3.

 
BirdLife International. Gyps himalayensis (amended version of 2017 assessment). The IUCN red list of threatened species 2017: e. T22695215A118594518. 2017. htthttps://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22695215A118594518.en. Accessed 10 Sept 2020.
 

Blumstein DT, Rangchi TN, Briggs T, de Andrade FS, Natterson-Horowitz B. A systematic review of carrion eaters' adaptations to avoid sickness. J Wildl Dis. 2017;53: 577-81.

 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QⅡME allows analysis of high-throughput community sequencing data. Nat Method. 2010;7: 335-6.

 

Chung O, Jin S, Cho YS, Lim J, Kim H, Jho S, et al. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures. Genome Biol. 2015;16: 215.

 

Colston TJ, Jackson CR. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol. 2016;25: 3776-800.

 

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505: 559-63.

 

de Paepe K, Kerckhof FM, Verspreet J, Courtin CM, Van de Wiele T. Inter-individual differences determine the outcome of wheat bran colonization by the human gut microbiome. Environ Microbiol. 2017;19: 3251-67.

 

Diakou A, Norte AC, de Carvalho IL, Núncio S, Nováková M, Kautman M, et al. Ticks and tick-borne pathogens in wild birds in Greece. Parasitol Res. 2016;115: 2011-6.

 

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Method. 2013;10: 996-8.

 

Gao H, Jiang Q, Ji H, Ning J, Li C, Zheng H. Type 1 diabetes induces cognitive dysfunction in rats associated with alterations of the gut microbiome and metabolomes in serum and hippocampus. BBA-Mol Basis Dis. 2019;1865: 165541.

 

Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms. Int J Oncol. 2018;52: 19-37.

 

Ghonimy A, Zhang DM, Farouk MH, Wang Q. The impact of carnitine on dietary fiber and gut bacteria metabolism and their mutual interaction in monogastrics. Int J Mol Sci. 2018;19: 1008.

 

Grigor'eva IN. Gallstone disease, obesity and the Firmicutes/Bacteroidetes ratio as a possible biomarker of gut dysbiosis. J Pers Med. 2021;11: 13.

 

Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8: 725.

 

Houston DC, Cooper JE. The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis. 1975;11: 306-13.

 

Huang P, Zhang Y, Xiao K, Jiang F, Wang H, Tang D, et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome. 2018;6: 211.

 

Huang G, Wang X, Hu Y, Wu Q, Nie Y, Dong J, et al. Diet drives convergent evolution of gut microbiomes in bamboo-eating species. Sci China Life Sci. 2021;64: 88-95.

 

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346: 1320-31.

 

Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474: 327-36.

 

Keenan SW, Engel AS, Elsey RM. The alligator gut microbiome and implications for archosaur symbioses. Sci Rep. 2013;3: 2877.

 

Kelly D, Yang L, Pei Z. Gut microbiota, Fusobacteria, and colorectal cancer. Diseases. 2018;6: 109.

 

Kocijan I, Prukner-Radovčić E, Beck R, Galov A, Marinculić A, Sušić G. Microflora and internal parasites of the digestive tract of Eurasian griffon vultures (Gyps fulvus) in Croatia. Eur J Wildl Res. 2009;55: 71-4.

 

Kogut MH. Issues and consequences of using nutrition to modulate the avian immune response. J Appl Poultry Res. 2017;26: 605-12.

 

Kohl KD. Diversity and function of the avian gut microbiota. J Comp Physiol B. 2012;182: 591-602.

 

Kohl KD, Connelly JW, Dearing MD, Forbey JS. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. FEMS Microbiol Lett. 2016;363: fnw144.

 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35: 1547-9.

 

Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18: 1185-93.

 

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31: 814-21.

 

Lee WY. Avian gut microbiota and behavioral studies. Korean J Ornithol. 2015;22: 1-11.

 

Lee WJ, Hase K. Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol. 2014;10: 416-24.

 

Levin D, Raab N, Pinto Y, Rothschild D, Zanir G, Godneva A, et al. Diversity and functional landscapes in the microbiota of animals in the wild. Science. 2021;372: e5352.

 

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320: 1647-51.

 

Lu X, Ke D, Zeng X, Gong G, Ci R. Status, ecology, and conservation of the Himalayan griffon Gyps himalayensis (Aves, Accipitridae) in the Tibetan plateau. Ambio. 2009;38: 166-73.

 

Margalida A, Oliva-Vidal P. The shadow of diclofenac hangs over European vultures. Nat Ecol Evol. 2017;1: 1050.

 
Mateos-Hernández L, Crespo E, de la Fuente J, de la Lastra JMP. Identification of key molecules involved in the protection of vultures against pathogens and toxins. In: Radis-Baptista G, editor. An integrated view of the molecular recognition and toxinology: from analytical procedures to biomedical applications. Rijeka: InTech; 2013. p. 241-65.https://doi.org/10.5772/54191
 

Meadows JA, Wargo MJ. Carnitine in bacterial physiology and metabolism. Microbiology. 2015;161: 1161-74.

 

Meng X, Lu S, Lai XH, Wang Y, Wen Y, Jin D, et al. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus. Int J Syst Evol Microbiol. 2017a;67: 1873-9.

 

Meng X, Lu S, Wang Y, Lai XH, Wen Y, Jin D, et al. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis. Int J Syst Evol Microbiol. 2017b;67: 1720-6.

 

Meng X, Lu S, Yang J, Jin D, Wang X, Bai X, et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect. 2017c;6: e9.

 

Meng X, Lai XH, Lu S, Liu S, Chen C, Zhou D, et al. Actinomyces tangfeifanii sp. nov., isolated from the vulture Aegypius monachus. Int J Syst Evol Microbiol. 2018;68: 3701-6.

 

Miyake S, Ngugi DK, Stingl U. Phylogenetic diversity, distribution, and cophylogeny of giant bacteria (Epulopiscium) with their surgeonfish hosts in the Red Sea. Front Microbiol. 2016;7: 285.

 

Moleón M, Sánchez-Zapata JA, Margalida A, Carrete M, Owen-Smith N, Donázar JA. Humans and scavengers: the evolution of interactions and ecosystem services. Bioscience. 2014;64: 394-403.

 

Ogada D, Shaw P, Beyers RL, Buij R, Murn C, Thiollay JM, et al. Another continental vulture crisis: Africa's vultures collapsing toward extinction. Conserv Lett. 2016;9: 89-97.

 

Padayachee T, Nzuza N, Chen W, Nelson DR, Syed K. Impact of lifestyle on cytochrome P450 monooxygenase repertoire is clearly evident in the bacterial phylum Firmicutes. Sci Rep. 2020;10: 13982.

 

Pinevich AV, Andronov EE, Pershina EV, Pinevich AA, Dmitrieva HY. Testing culture purity in prokaryotes: criteria and challenges. Antonie Van Leeuwenhoek. 2018;111: 1509-21.

 

Plaza PI, Blanco G, Madariaga MJ, Boeri E, Teijeiro ML, Bianco G, et al. Scavenger birds exploiting rubbish dumps: pathogens at the gates. Transbound Emerg Dis. 2019;66: 873-81.

 

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41: D590-6.

 

Ramirez C, Coronado J, Silva A, Romero J. Cetobacterium is a major component of the microbiome of giant Amazonian fish (Arapaima gigas) in Ecuador. Animals. 2018;8: 189.

 

Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF, Sicheritz-Pontén T, et al. The microbiome of New World vultures. Nat Commun. 2014;5: 5498.

 

Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14: 195-206.

 

Simon K, Verwoolde MB, Zhang J, Smidt H, de Vries RG, Kemp B, et al. Long-term effects of early life microbiota disturbance on adaptive immunity in laying hens. Poult Sci. 2016;95: 1543-54.

 

Smiddy M, Sleator RD, Patterson MF, Hill C, Kelly AL. Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl Environ Microbiol. 2004;70: 7555-7.

 

Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. P Roy Soc B-Biol Sci. 2019;286: 20182448.

 

Waite DW, Taylor MW. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front Microbiol. 2014;5: 223.

 

Waite DW, Taylor MW. Exploring the avian gut microbiota: current trends and future directions. Front Microbiol. 2015;6: 673.

 

Wei F, Wu Q, Hu Y, Huang G, Nie Y, Yan L. Conservation metagenomics: a new branch of conservation biology. Sci China Life Sci. 2019;62: 168-78.

 

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334: 105-8.

 

Yao R, Xu L, Lu G, Zhu L. Evaluation of the function of wild animal gut microbiomes using next-generation sequencing and bioinformatics and its relevance to animal conservation. Evol Bioinform Online. 2019;15: 1176934319848438.

 

Zepeda Mendoza ML, Roggenbuck M, Manzano-Vargas K, Hansen LH, Brunak S, Gilbert MTP, et al. Protective role of the vulture facial skin and gut microbiomes aid adaptation to scavenging. Acta Vet Scand. 2018;60: 61.

 

Zhai Q, Yin R, Yu L, Wang G, Tian F, Yu R, et al. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control. 2015;54: 23-30.

 

Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346: 1311-20.

 

Zhou C, Wang G, Yu H, Geng Y, Wu W, Tu H, et al. Genome-wide analysis reveals the genomic features of the turkey vulture (Cathartes aura) as a scavenger. Mol Genet Genom. 2019;294: 679-92.

Avian Research
Article number: 52
Cite this article:
Wang W, Gao X, Zheng S, et al. The gut microbiome and metabolome of Himalayan Griffons (Gyps himalayensis): insights into the adaptation to carrion-feeding habits in avian scavengers. Avian Research, 2021, 12(1): 52. https://doi.org/10.1186/s40657-021-00287-0

884

Views

29

Downloads

9

Crossref

8

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 29 April 2021
Accepted: 30 September 2021
Published: 18 October 2021
© The Author(s) 2021.

Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return