AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

An integrated assessment approach to optimal forest bioenergy production for young Scots pine stands

Tianjian Cao1( )Kari Hyytiäinen2Henna Hurttala3Lauri Valsta3Jerome K. Vanclay4
College of Forestry, Northwest A&F University, 712100 Yangling, China
Department of Economics and Management, University of Helsinki, P.O. Box 27, FIN-00014 Helsinki, Finland
Department of Forest Sciences, P.O. Box 27, FIN-00014 Helsinki, Finland
Forest Research Centre, Southern Cross University, P.O. Box 157, Lismore NSW 2480, Australia
Show Author Information

Abstract

Background

Bioenergy is re-shaping opportunities and imperatives of forest management. This study demonstrates,through a case study in Scots pine (Pinus sylvestris L.),how forest bioenergy policies affect stand management strategies.

Methods

Optimization studies were examined for 15 Scots pine stands of different initial stand densities,site types,and temperature sum regions in Finland. Stand development was modelled using the PipeQual stand simulator coupled with the simulation-optimization tool OptiFor Bioenergy to assess three forest bioenergy policies on energy wood harvest from early thinnings.

Results

The optimal solutions maximizing bare land value indicate that conventional forest management regimes remain optimal for sparse stands. Energy harvests occurred only when profitable,led to lower financial returns. A forest bioenergy policy which included compulsory energy wood harvesting was optimal for denser stands. At a higher interest rate (4 %),increasing energy wood price postponed energy wood harvesting. In addition,our results show that early thinning somewhat reduced wood quality for stands in fertile sites. For less fertile sites,the changes were insignificant.

Conclusions

A constraint of profitable energy wood harvest is not rational. It is optimal to carry out the first thinning with a flexible forest bioenergy policy depending on stand density

References

 

Ahtikoski A, Heikkilä J, Alenius V, Siren M (2008) Economic viability of utilizing biomass energy from young stands-the case of Finland. Biomass Bioenergy 32:988-996

 

Alam A, Kilpeläinen A, Kellomäki S (2010) Potential energy wood production with implications to timber recovery and carbon stocks under varying thinning and climate scenarios in Finland. Bioenerg Res 3:362-372

 

Amidon EL, Akin GS (1968) Dynamic programming to determine optimal levels of growing stock. For Sci 14:287291

 

Bolkesjø TF, Trømborg E, Solberg B (2006) Bioenergy from the forest sector: economic potential and interactions with timber and forest products markets in Norway. Scand J For Res 21:175-185

 

Cajander AK (1909) Über Waldtypen. Acta For Fenn 1:1-175

 
Cao T (2010) Silvicultural decisions based on simulation-optimization systems. Dissertationes Forestales 103. pp 48 + 53. ISBN 978-951-651-296-2, ISSN 1795-7389https://doi.org/10.14214/df.103
 

Cao T, Hyytiäinen K, Tahvonen O, Valsta L (2006) Effects of initial stand states on optimal thinning regime and rotation of Picea abies stands. Scand J For Res 21:388-398

 

Cao T, Valsta L, Mäkelä A (2010) A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in Scots pine stands. For Ecol Manage 260:1726-1734

 

Fahlvik N, Ekö PM, Pettersson N (2005) Influence of precommercial thinning grade on branch diameter and crown ratio in Pinus sylvestris in southern Sweden. Scand J For Res 20:243-251

 

Faustmann M (1849) Berechnung des wertes welchen Waldboden sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen. Allgemeine Forst- und Jagd-Zeitung 15:441-455

 
Finnish Guidelines for Good Silviculture (2006) Metsätalouden kehittämiskeskus Tapio, Helsinki, pp 100 (in Finnish)
 

Haight RG, Monserud RA (1990) Optimizing any-aged management of mixed-species stands: Ⅱ. Effects of decision criteria. For Sci 36:125-144

 

Hakkila P (2006) Factors driving the development of forest energy in Finland. Biomass Bioenergy 30:281-288

 

Hooke R, Jeeves TA (1961) "Direct search" solution of numerical and statistical problems. J Assoc Comput Mach 8:212-229

 

Huuskonen S (2008) The development of young Scots pine stands-precommercial and first commercial thinning. Dissertations Forestales pp 61:62

 

Huuskonen S, Hynynen J (2006) Timing and intensity of precommercial thinning and their effects on the first commercial thinning in Scots pine stands. Silva Fenn 40(4):645-662

 

Hynynen J, Ahtikoski A, Siitonen J, Sievänen R, Liski J (2005) Applying the MOTTI simulator to analyse the effects of alternative management schedules on timber and non-timber production. For Ecol Manage 207:5-18

 

Hyytiäinen K, Hari P, Kokkila T, Mäkelä A, Tahvonen O, Taipale J (2004) Connecting a process-based forest growth model to stand-level economic optimization. Can J For Res 34:20602073

 

Hyytiäinen K, Ilomäki S, Mäkelä A, Kinnunen K (2006) Economic analysis of stand establishment for Scots pine. Can J For Res 36:1179-1189

 

Johnstone WD (2005) The effects of juvenile spacing on 7-year-old lodgepole pine in central British Columbia. West J Appl For 20(3):160-166

 

Jylhä P, Laitila J (2007) Energy wood and pulpwood harvesting from young stands using a prototype whole-tree bundler. Silva Fenn 41(4):763-779

 

Kärkkäinen L, Matala J, Härkönen K, Kellomäki S, Nuutinen T (2008) Potential recovery of industrial wood and energy wood raw material in different cutting and climate scenarios for Finland. Biomass Bioenergy 32:934-943

 

Kotamaa E, Tokola T, Maltamo M, Packlén P, Kurttila M, Mäkinen A (2010) Integration of remote sensing-based bioenergy inventory data and optimal bucking for stand-level decision making. Eur J Forest Res 129:875-886

 

Kraxner F, Nordström E, Havlik P, Gusti M, Mosnier A, Frank S, Valin H, Fritz S, Fuss S, Kindermann G, McCallum I, Khabarov N, Böttcher H, See L, Aoki K, Schmid E, Máthé L, Obersteiner M (2013) Global bioenergy scenarios - Future forest development, land-use implications, and trade-offs. Biomass Bioenergy 57:86-96

 
Kuitto JP, Keskinen S, Lindroos J, Ojala T, Rajamäki J, Räsänen T, Teräväinen J (1994) Mechanized cutting and forest haulage. Metsäteho Report 410. Painovalmiste KY, Helsinki. (In Finnish)
 

Laitila J (2008) Harvesting technology and the cost of fuel chips from early thinnings. Silva Fenn 42(2):267-283

 
Laitila J, Asikainen A, Korhonen KT, Nuutienn Y (2004) Cost factors of the production of small-sized wood chips and supply logistics. (Pienpuuhakkeen tuotannon kustannustekijät ja toimituslogistiikka). Finnish Forest Research Institute, Working Papers, 3. pp 57
 

Lappi J (1992) A linear programming package for management planning. Research Papers 414. The Finnish Forest Research Institute, 134

 

Lyhykäinen H, Mäkinen H, Mäkelä A, Usenius A (2009) Predicting lumber grade and by-product yields for Scots pine. For Ecol Manage 258:146-158

 

Mäkelä A (1997) A carbon balance model of growth and self-pruning in trees based on structural relationships. For Sci 43(1):7-23

 

Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891-905

 

Mäkelä A, Mäkinen H (2003) Generating 3D sawlog with a process-based growth model. For Ecol Manage 184:337-354

 

Mäkelä A, Sievänen R (1992) Height growth in open-grown trees. J Theor Biol 159:443-467

 

Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Scots pine stands in Finland. For Ecol Manage 201:311-325

 

Malinen J, Pesonen M, Määttä T, Kajanus M (2001) Potential harvest for wood fuels (energy wood) from logging residues and first thinnings in Southern Finland. Biomass Bioenergy 20:189-196

 

Mangoyana RB (2011) Bioenergy from forest thinning: carbon emissions, energy balances and cost analyses. Renew Energy 36:2368-2373

 

McCormick K, Kåberger T (2007) Key barriers for bioenergy in Europe: economic conditions, know-how and institutional capacity, and supply chain co-ordination. Biomass Bioenergy 31:443-452

 

Melin Y, Petersson H, Egnell G (2010) Assessing carbon balance trade-offs between bioenergy and carbon sequestration of stumps at varying time scales and harvest intensities. For Ecol Manage 260:536-542

 
Ministry of Agriculture and Forestry (2006) Future review for the forest sector — outline of the forest council concerning focuses and aims for the forest sector. 11b/2006. ISBN 978-952-453-309-6. ISSN 1238-2531. pp 36
 
Ministry of Agriculture and Forestry (2008) Kansallinen mestäohjelma 2015. Lisää hyvinvointia monimuotoisista metsistä - Valtioneuvoston periaatepäätös. Maa- a metsätalousministeriön julkaisuja 3/2008 (Ministry of Agriculture and Forestry, Report 3/2008). Vammalan kirjapaino Oy. pp 45 (In Finnish)
 

Nurmi J (2007) Recovery of logging residues for energy from spruce (Pices abies) dominated stands. Biomass Bioenergy 31:375-380

 

Osyczka A (1984) Multicriterion optimization in engineering with FORTRAN programs. Ellis Horwood, Chichester, p 178

 

Peltola A, Ihalainen A (2013) Forest Resources. In: Ylitalo E (ed) Finnish Statistical Yearbook of Forestry. Finnish Forest Research Institute, Helsinki, p 440

 

Piene H (1978) Effects of increased spacing on carbon mineralization rates and temperature in a stand of young balsam fir. Can J For Res 8:398-406

 

Pothier D (2002) Twenty-year results of precommercial thinning in a balsam fir stand. For Ecol Manage 168:177-186

 

Pukkala T (2011) Optimizing forest management in Finland with carbon subsidies and taxes. For Policy Econ 13:425-434

 

Ruha T, Varmola M (1997) Precommercial thinning in naturally regenerated Scots pine stands in northern Finland. Silva Fenn 31(4):401-415

 

Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form: the pipe model theory. I. Basic analyses. Jpn J Ecol 14:97-105

 

Tong QJ, Zhang SY (2005) Impact of initial spacing and precommercial thinning on jack pine tree growth and stem quality. For Chron 81(3):418-428

 
UN-Energy (2007) Sustainable bioenergy: a framework for decision makers. United Nations. pp 61.http://www.fao.org/docrep/010/a1094e/a1094e00.htm(May 1, 2009)
 
UNFCCC (1997) The Kyoto protocol to the convention on climate change. United Nations Framework Convention on Climate Change. pp 24. http://unfccc.int/resource/docs/cop3/l07a01.pdf(June 12, 2015)
 

Valsta L (1990) A comparison of numerical methods for optimizing even aged stand management. Can J For Res 20:961-969

 

Varmola M, Salminen H (2004) Timing and intensity of precommercial thinning in Pinus sylvestris stands. Scand J For Res 19:142-151

 
Vuokila Y (1972) Treatment of seedling stands from the viewpoint of production. Folia For 141:36 (In Finnish with English summary)
 

Wetterlund E, Ledue S, Dotzauer E, Kindermann G (2013) Optimal use of forest residues in Europe under different policies—second generation biofuels versus combined heat and power. Biomass Conv Bioref 3:316

Forest Ecosystems
Article number: 19
Cite this article:
Cao T, Hyytiäinen K, Hurttala H, et al. An integrated assessment approach to optimal forest bioenergy production for young Scots pine stands. Forest Ecosystems, 2015, 2(3): 19. https://doi.org/10.1186/s40663-015-0043-6

536

Views

2

Downloads

4

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 20 February 2015
Accepted: 02 June 2015
Published: 20 June 2015
© 2015 Cao et al.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Return