AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (919.6 KB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Predicting the dynamics of a native Araucaria forest using a distanceindependent individual tree-growth model

Enrique Orellana1( )Afonso Figueiredo Filho1,2Sylvio Péllico Netto2Jerome Klaas Vanclay3
Midwest State University-UNICENTRO-PR, PR 153, Km 7, Riozinho, Irati, Paraná 84500-000, Brazil
Federal University of Paraná, UFPR. Av. Pref. Lothário Meissner, 900, Jardim Botanico, Curitiba, Paraná 80210-170, Brazil. 3Southern Cross University (SCU), PO Box 157, Lismore, NSW, Australia
Southern Cross University (SCU), PO Box 157, Lismore, NSW, Australia
Show Author Information

Abstract

Background

In recent decades, native Araucaria forests in Brazil have become fragmented due to the conversion of forest to agricultural lands and commercial tree plantations. Consequently, the forest dynamics in this forest type have been poorly investigated, as most fragments are poorly structured in terms of tree size and diversity.

Methods

We developed a distance-independent individual tree-growth model to simulate the forest dynamics in a native Araucaria forest located predominantly in southern Brazil. The data were derived from 25 contiguous plots (1 ha) established in a protected area left undisturbed for the past 70 years. The plots were measured at 3-year intervals from their establishment in 2002. All trees above a 10-cm diameter at breast height were tagged, identified as to species, and measured. Because this forest type comprises hundreds of tree species, we clustered them into six ecological groups: understory, subcanopy, upper canopy shade-tolerant, upper canopy light-demanding, pioneer, and emergent. The diameter increment, survival, and recruitment sub-models were fitted for each species group, and parameters were implemented in a simulation software to project the forest dynamics. The growth model was validated using independent data collected from another research area of the same forest type. To simulate the forest dynamics, we projected the species group and stand basal areas for 50 years under three different stand-density conditions: low, average, and high.

Results

Emergent species tended to grow in basal area, irrespective of the forest density conditions. Conversely, shade-tolerant species tended to decline over the years. Under low-density conditions, the model showed a growth tendency for the stand basal area, while under average-density conditions, forest growth tended to stabilize within 30 years. Under high-density conditions, the model indicated a decline in the stand basal area from the onset of the simulation, suggesting that under these conditions, the forest has already reached its maximum-stock capacity.

Conclusions

The model validation using independent data indicated close agreement between the observed and estimated values, suggesting the model is consistent in projecting species-group and stand growth. The methodology used in this study for developing the growth model should be tested in other species-rich forests.

References

 

Alder D, Silva J (2000) An empirical cohort model for management of Terra Firme forests in the Brazilian Amazon. For Ecol Manage 130:141-157

 

Alder D, Oavika F, Sanchez M, Silva JNM, van der Hout P, Wright HL (2002) A comparison of species growth rates from four moist tropical forest regions using increment-size ordination. Int For Rev 4:196-205. doi:10.1505/IFOR.4.3.196.17398

 

Behling H, Pillar VD (2007) Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos Trans R Soc Lond B Biol Sci 362:243-251. doi:10.1098/rstb.2006.1984

 

Botkin DB (1993) Forest dynamics: an ecological model. Oxford University Press, Oxford

 

Carlucci MB, Jarenkow JA, da Silva Duarte L, Pillar VDP (2011) Conservação da Floresta com Araucária no Extremo Sul do Brasil. Nat Conserv 9:111-114. doi:10.4322/natcon.2011.015

 
Carvalho PER (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa, Colombo
 
Carvalho PER (2003) Espécies arbóreas brasileiras, 1st edn. Embrapa Florestas, Colombo
 

Chave J (1999) Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecol Modell 124:233-254. doi:10.1016/S0304-3800(99)00171-4

 
Cook RD, Weisberg S (1999) Applied regression including computing and graphics. John Wiley & Sons, New Yorkhttps://doi.org/10.1002/9780470316948
 

Easdale TA, Allen RB, Peltzer DA, Hurst JM (2012) Size-dependent growth responses to competition and environment in Nothofagus menziesii. For Ecol Manage 270:223-231. doi:10.1016/j.foreco.2012.01.009

 

Ebling AA, Watzlawick LF, Rodrigues AL, Longhi SJ, Longhi RV, Abrão SF (2012) Acuracidade da distribuição diamétrica entre métodos de projeção em Floresta Ombrófila Mista. Ciência Rural 42:1020-1026. doi:10.1590/S0103-84782012000600011

 

Figueiredo Filho A, Dias AN, Stepka TF, Sawczuk AR (2010) Crescimento, mortalidade, ingresso e distribuição diamétrica em floresta ombrófila mista. Floresta 40:763-776. doi:10.5380/rf.v40i4.20328

 

Gourlet-Fleury S, Blanc L, Picard N, Sist P, Dick J, Nasi R, Swaine MD, Forni E (2005) Grouping species for predicting mixed tropical forest dynamics: looking for a strategy. Ann For Sci 62:785-796. doi:10.1051/forest:2005084

 

Groeneveld J, Alves LF, Bernacci LC, Catharino ELM, Knogge C, Metzger JP (2009) The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecol Modell 220:2450-2459. doi:10.1016/j.ecolmodel.2009.06.015

 

Huth A, Ditzer T (2000) Simulation of the growth of a lowland Dipterocarp rain forest with FORMIX3. Ecol Modell 134:1-25. doi:10.1016/S0304-3800(00)00328-8

 

Kariuki M, Kooyman RM, Brooks L, Smith RGB, Vanclay JK (2006) Modelling growth, recruitments and mortality to describe and simulate dynamics of subtropical rainforests following different levels of disturbance. FBMIS 1:22-47

 

King DA, Davies SJ, Noor NSM (2006) Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. For Ecol Manage 223:152-158. doi:10.1016/j.foreco.2005.10.066

 
Koch Z, Corrêa MC (2002) Araucária: a floresta do Brasil meridional. Olhar Brasileiro, Curitiba
 

Köhler P, Huth A (1998) The effects of tree species grouping in tropical rain forest modelling Simulations with the individual based model Formind. Ecol Modell 109:301-321

 

Köhler P, Ditzer T, Ong RC, Huth A (2001) Comparison of measured and simulated growth on permanent plots in Sabah's rain forests. For Ecol Manage 142:1-16

 

Lana MD, Péllico Netto S, Corte APD, Sanquetta CR, Ebling AA (2015) Prognose da Estrutura Diamétrica em Floresta Ombrófila Mista. Rev Floresta e Ambient 22:71-78

 

Ledermann T, Eckmüllner O (2004) A method to attain uniform resolution of the competition variable Basal-Area-in-Larger Trees (BAL) during forest growth projections of small plots. Ecol Modell 171:195-206. doi:10.1016/j.ecolmodel.2003.08.005

 

Liu J, Ashton PS (1998) FORMOSAIC: an individual-based spatially explicit model for simulating forest dynamics in landscape mosaics. Ecol Modell 106:177-200. doi:10.1016/S0304-3800(97)00191-9

 

Lujan-Soto JE, Corral-Rivas JJ, Aguirre-Calderón OA, Von Gadow K (2015) Grouping forest tree species on the Sierra Madre Occidental, Mexico. Allg Forst und Jagdzeitung AFJZ 186:63-71

 

Mello AA de, Eisfeld R de L, Sanquetta CR (2003) Projeção Diamétrica E Volumétrica Da Araucária E Espécies Associadas No Sul Do Paraná, Usando Matriz De Transição. Rev acadêmica ciências agrárias e Ambient 1:55-66

 

Muetzelfeldt R, Massheder J (2003) The Simile visual modelling environment. Eur J Agron 18:345-358

 

Newton AC (2007) Forest ecology and conservation: a handbook of techniques. Oxford University Press, Oxford

 

Phillips PD, Yasman I, Brash TE, van Gardingen PR (2002) Grouping tree species for analysis of forest data in Kalimantan (Indonesian Borneo). For Ecol Manage 157:205-216. doi:10.1016/S0378-1127(00)00666-6

 

Phillips PD, de Azevedo CP, Degen B, Thompson IS, Silva JNM, van Gardingen PR (2004) An individual-based spatially explicit simulation model for strategic forest management planning in the eastern Amazon. Ecol Modell 173:335-354. doi:10.1016/j.ecolmodel.2003.09.023

 

Picard N, Mortier F, Rossi V, Gourlet-Fleury S (2010) Clustering species using a model of population dynamics and aggregation theory. Ecol Modell 221:152-160. doi:10.1016/j.ecolmodel.2009.10.013

 

Picard N, Köhler P, Mortier F, Gourlet-Fleury S (2012) A comparison of five classifications of species into functional groups in tropical forests of French Guiana. Ecol Complex 11:75-83. doi:10.1016/j.ecocom.2012.03.003

 
Pretzsch H (2009) Forest dynamics, growth and yield. Springer Berlin Heidelberg, Berlinhttps://doi.org/10.1007/978-3-540-88307-4
 

Purves D, Pacala S (2008) Predictive models of forest dynamics. Science 320:1452-1453. doi:10.1126/science.1155359

 

Pütz S, Groeneveld J, Alves LF, Metzger JP, Huth A (2011) Fragmentation drives tropical forest fragments to early successional states: a modelling study for Brazilian Atlantic forests. Ecol Modell 222:1986-1997. doi:10.1016/j.ecolmodel.2011.03.038

 
Sands R (2005) Forestry in a global context. CABI, Wallingfordhttps://doi.org/10.1079/9780851990897.0001
 

Sanquetta CR (1999) ARAUSIS: sistema de simulação para manejo sustentável de florestas de Araucária. Floresta 29:115-121. doi:10.5380/rf.v29i12.2321

 

Stepka TF, Dias AN, Figueiredo Filho A, Machado S, Sawczuk A (2010) Prognose da estrutura diamétrica de uma Floresta Ombrófila Mista com os métodos razão de movimentos e matriz de transição. Pesqui Florest Bras 30:327-335. doi:10.4336/2010.pfb.30.64.327

 

Tietjen B, Huth A (2006) Modelling dynamics of managed tropical rainforests-An aggregated approach. Ecol Modell 199:421-432. doi:10.1016/j.ecolmodel.2005.11.045

 

Vanclay JK (1991a) Aggregating tree species to develop diameter increment equations for tropical rainforests. For Ecol Manage 42:143-168. doi:10.1016/0378-1127(91)90022-N

 

Vanclay JK (1991b) Mortality functions for North Queensland rain forests. J Trop For Sci 4:15-36

 

Vanclay JK (1992) Modelling regeneration and recruitment in a tropical rain forest. Can J For Res 22:1235-1248. doi:10.1139/x92-165

 
Vanclay JK (1994) Modelling forest growth and yield: applications to mixed tropical forests. CABI, Wallingford
 

Vanclay JK (2003) Growth modelling and yield prediction for sustainable forest management. Malaysian For 66:58-69

 
Vanclay JK (2012) Modelling continuous cover forests. In: Pukkala T, von Gadow K (eds) Continuous cover forestry, 2nd edn. Springer, New York, pp 229-242https://doi.org/10.1007/978-94-007-2202-6_7
 
Weiskittel AR, Hann DW, Kershaw JA Jr, Vanclay JK (2011) Forest growth and yield modeling. Wiley-Blackwell, Chichesterhttps://doi.org/10.1002/9781119998518
 

Zhao D, Borders B, Wilson M (2004) Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower Mississippi alluvial valley. For Ecol Manage 199:307-322. doi:10.1016/j.foreco.2004.05.043

Forest Ecosystems
Article number: 12
Cite this article:
Orellana E, Figueiredo Filho A, Péllico Netto S, et al. Predicting the dynamics of a native Araucaria forest using a distanceindependent individual tree-growth model. Forest Ecosystems, 2016, 3(3): 12. https://doi.org/10.1186/s40663-016-0071-x

567

Views

2

Downloads

10

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 25 February 2016
Accepted: 27 April 2016
Published: 06 May 2016
© 2016 Orellana et al.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return