AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data

Cheng Wang1,2Shezhou Luo1( )Xiaohuan Xi2Sheng Nie2Dan Ma1Youju Huang3
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
Guangxi Zhuang Autonomous Region Institute of Natural Resources Remote Sensing, Nanning 530023, China
Show Author Information

Abstract

Background

Forest canopy height is a key forest structure parameter. Precisely estimating forest canopy height is vital to improve forest management and ecological modelling. Compared with discrete-return LiDAR (Light Detection and Ranging), small-footprint full-waveform airborne LiDAR (FWL) techniques have the capability to acquire precise forest structural information. This research mainly focused on the influence of voxel size on forest canopy height estimates.

Methods

A range of voxel sizes (from 10.0 m to 40.0 m interval of 2 m) were tested to obtain estimation accuracies of forest canopy height with different voxel sizes. In this study, all the waveforms within a voxel size were aggregated into a voxel-based LiDAR waveform, and a range of waveform metrics were calculated using the voxel-based LiDAR waveforms. Then, we established estimation model of forest canopy height using the voxel-based waveform metrics through Random Forest (RF) regression method.

Results and conclusions

The results showed the voxel-based method could reliably estimate forest canopy height using FWL data. In addition, the voxel sizes had an important influence on the estimation accuracies (R2 ranged from 0.625 to 0.832) of forest canopy height. However, the R2 values did not monotonically increase or decrease with the increase of voxel size in this study. The best estimation accuracy produced when the voxel size was 18 m (R2 = 0.832, RMSE = 2.57 m, RMSE% = 20.6%). Compared with the lowest estimation accuracy, the R2 value had a significant improvement (33.1%) when using the optimal voxel size. Finally, through the optimal voxel size, we produced the forest canopy height distribution map for this study area using RF regression model. Our findings demonstrate that the optimal voxel size need to be determined for improving estimation accuracy of forest parameter using small-footprint FWL data.

References

 

Ahmed OS, Franklin SE, Wulder MA, White JC (2015) Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the random Forest algorithm. ISPRS 101:89-101

 

Alexander C, Korstjens AH, Hill RA (2018) Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models. Int J Appl Earth Obs Geoinf 65:105-113

 

Allouis T, Durrieu S, Vega C, Couteron P (2013) Stem volume and above-ground biomass estimation of individual pine trees from LiDAR data: contribution of full-waveform signals. IEEE J Sel Topics Appl Earth Observ Remote Sens 6(2):924-934

 

Almeida DRA, Stark SC, Shao G, Schietti J, Nelson BW, Silva CA, Gorgens EB, Valbuena R, Papa DA, Brancalion PHS (2019) Optimizing the remote detection of tropical rainforest structure with airborne Lidar: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens 11(1):92. https://doi.org/10.3390/rs11010092.

 

Alonzo M, Bookhagen B, McFadden JP, Sun A, Roberts DA (2015) Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry. Remote Sens Environ 162:141-153

 

Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LiDAR in Indonesian peatlands. Proc Natl Acad Sci U S A 106(50):21213-21218

 

Balzter H, Rowland C, Saich P (2007) Forest canopy height and carbon estimation at monks wood National Nature Reserve, UK, using dual-wavelength SAR interferometry. Remote Sens Environ 108(3):224-239

 

Barrachina M, Cristóbal J, Tulla AF (2015) Estimating above-ground biomass on mountain meadows and pastures through remote sensing. Int J Appl Earth Obs Geoinf 38:184-192

 

Breiman L (2001) Random forests. Mach Learn 45:5-32

 

Cao L, Coops NC, Hermosilla T, Innes J, Dai JS, She GH (2014) Using small-footprint discrete and full-waveform airborne LiDAR metrics to estimate total biomass and biomass components in subtropical forests. Remote Sens 6(8):7110-7135

 

Chopping M, Schaaf CB, Zhao F, Wang ZS, Nolin AW, Moisen GG, Martonchik JV, Bull M (2011) Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR. Remote Sens Environ 115(11):2943-2953

 

Cifuentes R, van der Zande D, Farifteh J, Salas C, Coppin P (2014) Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data. Agric For Meteorol 194:230-240

 
Crespo-Peremarch P, Ruiz LA (2018) Influence of Lidar full-waveform density and voxel size on forest stand estimates. IGARSS 2018 International geoscience and remote sensing symposium, Valenciahttps://doi.org/10.1109/IGARSS.2018.8517594
 

Dalponte M, Frizzera L, Orka HO, Gobakken T, Naesset E, Gianell D (2018) Predicting stem diameters and aboveground biomass of individual trees using remote sensing data. Ecol Indic 85:367-376

 

Drake JB, Dubayah RO, Clark DB, Knox RG, Blair JB, Hofton MA, Chazdon RL, Weishampel JF, Prince SD (2002) Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sens Environ 79(2):305-319

 

Duncanson LI, Niemann KO, Wulder MA (2010) Estimating forest canopy height and terrain relief from GLAS waveform metrics. Remote Sens Environ 114:138-154

 

Eisfelder C, Kuenzer C, Dech S (2012) Derivation of biomass information for semi-arid areas using remote-sensing data. Int J Remote Sens 33(9):2937-2984

 

Frazer GW, Magnussen S, Wulder MA, Niemann KO (2011) Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens Environ 115(2):636-649

 

Gao S, Niu Z, Sun G, Zhao D, Jia K, Qin YC (2015) Height extraction of maize using airborne full-waveform LiDAR data and a deconvolution algorithm. IEEE Geosci Remote Sens Lett 12(9):1978-1982

 

García M, Riaño D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in Central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816-830

 

García M, Saatchi S, Ustin S, Balzter H (2018) Modelling forest canopy height by integrating airborne LiDAR samples with satellite radar and multispectral imagery. Int J Appl Earth Obs Geoinf 66:159-173

 

Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80-91

 

Hancock S, Anderson K, Disney M, Gaston KJ (2017) Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: calibration and validation with voxelised terrestrial lidar. Remote Sens Environ 188:37-50

 

Hermosilla T, Coops NC, Ruiz LA, Moskal LM (2014a) Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sens Lett 5(4):332-341

 

Hermosilla T, Ruiz LA, Kazakova AN, Coops NC, Moskal LM (2014b) Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. Int J Wildland Fire 23(2):224-233. https://doi.org/10.1071/wf13086

 

Iverson LR, Rebbeck J, Peters MP, Hutchinson T, Fox T (2019) Predicting Ailanthus altissima presence across a managed forest landscape in Southeast Ohio. For Ecosyst 6(1):41. https://doi.org/10.1186/s40663-019-0198-7

 

Kim E, Lee WK, Yoon M, Lee JY, Son Y, Abu Salim K (2016) Estimation of voxel-based above-ground biomass using airborne LiDAR data in an intact tropical rain forest, Brunei. Forests 7(11):259. https://doi.org/10.3390/f7110259

 
Lai X, Zheng M (2015) A denoising method for LiDAr full-waveform data. Mathem Prob Engineer. https://doi.org/10.1155/2015/164318
 

Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Espirito-Santo FD, Hunter MO, de Oliveira R, de Camargo PB (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32(22). https://doi.org/10.1029/2005gl025518

 

Lefsky MA, Keller M, Panga Y, de Camargo PB, Hunter MO (2007) Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms. J Appl Remote Sens 1(1): 013537. https://doi.org/10.1117/1.2795724

 

Li W, Niu Z, Li J, Chen HY, Gao S, Wu MQ, Li D (2016) Generating pseudo large footprint waveforms from small footprint full-waveform airborne LiDAR data for the layered retrieval of LAI in orchards. Opt Express 24(9):10142-10156

 

Lindberg E, Olofsson K, Holmgren J, Olsson H (2012) Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens Environ 118:151-161

 

Luo S, Chen M, Wang C, Gonsamo A, Xi XH, Lin Y, Qian MJ, Peng DL, Nie S, Qin HM (2018) Comparative performances of airborne LiDAR height and intensity data for leaf area index estimation. IEEE J Sel Topics Appl Earth Observ Remote Sens 11(1):300-310

 

Luo SZ, Wang C, Xi XH, Nie S, Fan XY, Chen HY, Ma D, Liu JF, Zou J, Lin Y, Zhou GQ (2019a) Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data. Int J Appl Earth Obs Geoinf 83:101922. https://doi.org/10.1016/j.jag.2019.101922

 

Luo SZ, Wang C, Xi XH, Nie S, Fan XY, Chen HY, Yang XB, Peng DL, Lin Y, Zhou GQ (2019b) Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass. Ecol Indic 102:801-812

 

Luo SZ, Wang C, Xi XH, Pan FF, Qian MJ, Peng DL, Nie S, Qin HM, Lin Y (2017) Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data. Int J Appl Earth Obs Geoinf 58:107-117

 

Maguya AS, Tegel K, Junttila V, Kauranne T, Korhonen M, Burns J, Leppanen V, Sanz B (2015) Moving voxel method for estimating canopy base height from. Airborne laser scanner data 7(7):8950-8972

 

Matasci G, Coops NC, Williams DAR, Page N (2018) Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study. For Ecosyst 5(1):31. https://doi.org/10.1186/s40663-018-0146-y

 

Mielcarek M, Stereńczak K, Khosravipour A (2018) Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. Int J Appl Earth Obs Geoinf 71:132-143

 

Milenković M, Wagner W, Quast R, Hollaus M, Ressl C, Pfeifer N (2017) Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR. ISPRS 128:61-72

 

Montagnoli A, Fusco S, Terzaghi M, Kirschbaum A, Pflugmacher D, Cohen WB, Scippa GS, Chiatante D (2015) Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian pre-Alps. For Ecosyst 2(1):10. https://doi.org/10.1186/s40663-015-0035-6

 

Muss JD, Mladenoff DJ, Townsend PA (2011) A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sens Environ 115(3):824-835

 

Naidoo L, Cho MA, Mathieu R, Asner G (2012) Classification of savanna tree species, in the greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random Forest data mining environment. ISPRS 69:167-179

 

Nie S, Wang C, Zeng H, Xi X, Li G (2017) Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest. Ecol Indic 78:221-228

 

Pablo CP, Piotr T, Nicholas C, Angel RL (2018) Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sens Environ 217:400-413

 

Pang Y, Lefsky M, Sun G, Ranson J (2011) Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar. Remote Sens Environ 115(11):2798-2809

 

Pearse GD, Watt MS, Dash JP, Stone C, Caccamo G (2019) Comparison of models describing forest inventory attributes using standard and voxel-based lidar predictors across a range of pulse densities. Int J Appl Earth Obs Geoinf 78:341-351

 

Popescu SC, Zhao K (2008) A voxel-based lidar method for estimating crown base height for deciduous and pine trees. Remote Sens Environ 112(3):767-781

 

Popescu SC, Zhao K, Neuenschwander A, Lin C (2011) Satellite lidar vs. small footprint airborne lidar: comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sens Environ 115(11):2786-2797

 

Qin YC, Yao W, Vu TT, Li SH, Niu Z, Ban YF (2015) Characterizing radiometric attributes of point cloud using a normalized reflective factor derived from small footprint LiDAR waveform. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(2):740-749

 

Ramoelo A, Cho MA, Mathieu R, Madonsela S, van de Kerchove R, Kaszta Z, Wolff E (2015) Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and world View-2 data. Int J Appl Earth Obs Geoinf 43:43-54

 
Ranson KJ, Sun G, Kovacs K, Kharuk VI (2004) Landcover attributes from ICESat GLAS data in Central Siberia, IGARSS 2004. IGARSS2004 Proceedings, 20-24 September 2004, Anchorage, Alaska, USA
 

Richter K, Stelling N, Maas HG (2014) Correcting attenuation effects caused by interactions in the forest canopy in full-waveform airborne laser scanner data. ISPRS XL-3:273-280

 

Rogers JN, Parrish CE, Ward LG, Burdick DM (2015) Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters. Remote Sens Environ 156:264-275

 

Silva CA, Saatchi S, Garcia M, Labriere N, Klauberg C, Ferraz A, Meyer V, Jeffery KJ, Abernethy K, White L, Zhao K, Lewis SL, Hudak AT (2018) Comparison of small- and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE J Sel Topics Appl Earth Observ Remote Sens:11(10): 3512-3526

 

Solberg S, Hansen EH, Gobakken T, Næssset E, Zahabu E (2017) Biomass and InSAR height relationship in a dense tropical forest. Remote Sens Environ 192:166-175

 
Stelling N, Richter K (2016) Voxel based representation of full-waveform airborne laser scanner data for forestry applications. ISPRS XLI-B8, pp 755-762https://doi.org/10.5194/isprsarchives-XLI-B8-755-2016
 

Stojanova D, Panov P, Gjorgjioski V, Kobler A, Džeroski S (2010) Estimating vegetation height and canopy cover from remotely sensed data with machine learning. Ecol Inform 5(4):256-266

 

Sumnall MJ, Hill RA, Hinsley SA (2016) Comparison of small-footprint discrete return and full waveform airborne lidar data for estimating multiple forest variables. Remote Sens Environ 173:214-223

 

Tsui OW, Coops NC, Wulder MA, Marshall PL (2013) Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sens Environ 139:340-352

 

Wang ZS, Schaaf CB, Lewis P, Knyazikhin Y, Schull MA, Strahler AH, Yao T, Myneni RB, Chopping MJ, Blair BJ (2011) Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data. Remote Sens Environ 115(6):1595-1601

 

Zhang WM, Wan P, Wang TJ, Cai SS, Chen YM, Jin XL, Yan GJ (2019) A novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens 11(2):211

 

Zhao KG, Suarez JC, Garcia M, Hu TX, Wang C, Londo A (2018) Utility of multitemporal lidar for forest and carbon monitoring: tree growth, biomass dynamics, and carbon flux. Remote Sens Environ 204:883-897

 

Zheng G, Ma LX, Eitel JUH, He W, Magney TS, Moskal LM, Li MS (2017) Retrieving directional gap fraction, extinction coefficient, and effective leaf area index by incorporating scan angle information from discrete aerial Lidar data. IEEE Trans Geosci Remote Sens 55(1):577-590

 

Zhou Y, Qiu F (2015) Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis. ISPRS 101:221-232

Forest Ecosystems
Article number: 31
Cite this article:
Wang C, Luo S, Xi X, et al. Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data. Forest Ecosystems, 2020, 7(3): 31. https://doi.org/10.1186/s40663-020-00243-2

533

Views

9

Downloads

14

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 20 October 2019
Accepted: 24 April 2020
Published: 07 May 2020
© The Author(s) 2020.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return