AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research | Open Access

Effects of firewood harvesting intensity on biodiversity and ecosystem services in shrublands of northern Patagonia

Matías G. Goldenberg1,2 ( )Facundo J. Oddi1,2Juan H. Gowda3Lucas A. Garibaldi1,2
Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, San Carlos de Bariloche, Río Negro, Argentina
Laboratorio Ecotono, INIBIOMA, CONICET-Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
Show Author Information

Abstract

Background

Forest management has historically focused on provisioning of goods (e.g. timber, biomass), but there is an increasing interest to manage forests also to maintain biodiversity and to provide other ecosystem services (ES).

Methods

We evaluated the effects of firewood harvesting intensity on biodiversity and different ES in three contrasting shrubland sites in northern Patagonia (Argentina). At each site, four harvesting treatments, representing various levels of harvest intensity, were randomly assigned to eight permanent sample plots of 31.5 m × 45 m during 2013–2014.

Results

We found that the effects of increasing harvesting intensity on plant diversity changed from negative to positive (and from nonlinear to more linear responses) witd increasing site productivity. Harvesting intensity showed contrasting effects on variables related to fire protection ecosystem service, since it reduced fuel amount (potentially reducing fire spread) but also reduced live fuel moisture content (potentially increasing flammability) at the three sites. Two variables related to soil formation and protection ES, leaf litter cover and aerial soil cover, decreased witd harvesting intensity at the three sites.

Conclusions

We conclude that shrubland management for firewood production may enhance biodiversity without compromising certain important ES. The intensity of harvesting should be determined according to site conditions and forecasted impacts on biodiversity, fire and soil formation and protection.

References

 

Ares A, Neill AR, Puettmann KJ (2010) Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. Forest Ecol Manag 260(7): 1104–1113 https://doi.org/10.1016/j.foreco.2010.06.023

 
Bartoń K (2009) MuMIn: multi-model inference. R package, version 0.12.2. http://r-forge.r-project.org/projects/mumin/. Accessed 12 Dec 2019
 
Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4, vol 67. https://doi.org/10.18637/jss.v067.i01
 

Battles JJ, Shlisky AJ, Barrett RH, Heald RC, Allen-Diaz BH (2001) The effects of forest management on plant species diversity in a Sierran conifer forest. Forest Ecol Manag 146: 211–222. https://doi.org/10.1016/S0378-1127(00)00463-1

 

Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12(12): 1394–1404 https://doi.org/10.1111/j.1461-0248.2009.01387.x

 

Bianchi LO, Defossé GE (2015) Live fuel moisture content and leaf ignition of forest species in Andean Patagonia, Argentina. Int J Wildland Fire 24(3): 340–348 https://doi.org/10.1071/WF13099

 

Biber P, Borges J, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-Debets R, Corrigan E, Eriksson L, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M, Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D, Sedmák R, Smreček R, Stanislovaitis A, Tomé M, Trubins R, Tuček J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2015) How sensitive are ecosystem services in european forest landscapes to silvicultural treatment? Forests 6(5): 1666–1695 https://doi.org/10.3390/f6051666

 

Blackhall M, Raffaele E, Paritsis J, Tiribelli F, Morales JM, Kitzberger T, Gowda JH, Veblen TT (2017) Effects of biological legacies and herbivory on fuels and flammability traits: a long-term experimental study of alternative stable states. J Ecol 105: 1309–1322 https://doi.org/10.1111/1365-2745.12796

 

Blackhall M, Raffaele E, Veblen TT (2012) Is foliar flammability of woody species related to time since fire and herbivory in Northwest Patagonia, Argentina? J Veg Sci 23(5): 931–941 https://doi.org/10.1111/j.1654-1103.2012.01405.x

 

Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries RS, Diaz S, Dietz T, Duraiappah AK, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci 106(5): 1305–1312 https://doi.org/10.1073/pnas.0808772106

 

Carron AI, Garibaldi LA, Marquez S, Fontenla S (2020) The soil fungal community of native woodland in Andean Patagonian forest: a case study considering experimental forest management and seasonal effects. Forest Ecol Manag 461(2020): 117955. https://doi.org/10.1016/j.foreco.2020.117955

 

Chapin FS, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology. Springer, New York

 

Cimon-Morin JÔ, Darveau M, Poulin M (2013) Fostering synergies between ecosystem services and biodiversity in conservation planning: a review. Biol Conserv 166: 144–154 https://doi.org/10.1016/j.biocon.2013.06.023

 

Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199(4335): 1302–1310 https://doi.org/10.1126/science.199.4335.1302

 

Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Pooter H (2003) Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4): 335–380 https://doi.org/10.1071/BT02124

 

Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015) Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8: 776–779 https://doi.org/10.1038/ngeo2520

 

Davel M, Ortega A (2003) Estimación del índice de sitio para pino oregón a partir de variables ambientales en la Patagonia Andina Argentina. Bosque 24(1): 55–69 https://doi.org/10.4067/S0717-92002003000100005

 

de Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7(3): 260–272 https://doi.org/10.1016/j.ecocom.2009.10.006

 

de Paz M, Gobbi ME, Raffaele E (2013) Mantillo de las especies leñosas de matorrales del no de la patagonia: Abundancia, composición, estructura y heterogeneidad. Boletín de la Sociedad Argentina de Botánica 48(3–4): 525–541

 

de Torres Curtd M, Biscayart C, Ghermandi L, Pfister G (2012) Wildland-Urban Interface Fires and Socioeconomic Conditions: A Case Study of a Northwestern Patagonia City. Environ Manag 49: 876 https://doi.org/10.1007/s00267-012-9825-6

 

Gallardo JF, Martín A, Moreno G, Santa Regina I (1998) Nutrient cycling in deciduous forest ecosystems of the sierra de Gata mountains: nutrient supplies to the soil through botd litter and throughfall. Ann Sci Forest 55(7): 771–784 https://doi.org/10.1051/forest:19980702

 

Garibaldi LA, Aristimuño FJ, Oddi FJ, Tiribelli T (2017) Inferencia multimodelo en ciencias sociales y ambientales. Ecologia Austral 348–363

 

Ghermandi L, Beletzky NA, de Torres Curtd MI, Oddi FJ (2016) From leaves to landscape: a multiscale approach to assess fire hazard in wildland-urban interface areas. J Environ Manag 183: 925–937 https://doi.org/10.1016/j.jenvman.2016.09.051

 

Goldenberg MG, Gowda JH, Casas C, Garibaldi LA (2018) Efecto de la tasa de descuento sobre la priorización de alternativas de manejo del matorral Norpatagónico argentino. Bosque 39(2): 217–226 https://doi.org/10.4067/S0717-92002018000200217

 

Gyenge J, Elena M, Sarasola M, De Urquiza M, Schlichter T (2009) Ecuaciones para la estimación de biomasa aérea y volumen de fuste de algunas especies leñosas nativas en el valle del río Foyel, NO de la Patagonia argentina. Bosque 30(2): 95–101 https://doi.org/10.4067/S0717-92002009000200005

 
Haines-Young R, Potschin MB, (2018) Common international classification of ecosystem services (CICES) V5.1 and guidance on the application of the revised structure. http://www.cices.eu. Accessed 12 Dec 2019https://doi.org/10.3897/oneeco.3.e27108
 

Halofsky JS, Halofsky JE, Hemstrom MA, Morzillo AT, Zhou X, Donato DC (2017) Divergent trends in ecosystem services under different climate-management futures in a fire-prone forest landscape. Clim Chang 142(1–2): 83–95 https://doi.org/10.1007/s10584-017-1925-0

 

Harrington TB, Edwards MB (1999) Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations. Can J For Res 29(7): 1055–1064 https://doi.org/10.1139/x99-118

 

Huebschmann MM, Lynch TB, Wittwer RF (1999) Needle litterfall prediction models for even-aged natural shortleaf pine (Pinus echinata mill.) stands. Forest Ecol Manag 117(1–3): 179–186 https://doi.org/10.1016/S0378-1127(98)00466-6

 

Huston MA (2014) Disturbance, productivity, and species diversity: empiricism versus logic in ecological theory. Ecology 95(9): 2382–2396

 

Ishii HT, Maleque MA, Taniguchi S (2008) Line thinning promotes stand growtd and understory diversity in Japanese cedar (Cryptomeria japonica D. Don) plantations. J Forest Res 13(1): 73–78 https://doi.org/10.1007/s10310-007-0051-7

 

Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137(3–4): 253–268 https://doi.org/10.1016/j.geoderma.2006.09.003

 

Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16(8): 406–411 https://doi.org/10.1016/j.tplants.2011.04.002

 

Kitzberger T, Veblen TT (1999) Fire-induced changes in northern Patagonian landscapes. Landsc Ecol 14: 1–15 https://doi.org/10.1023/A:1008069712826

 

Kitzberger T, Veblen TT, Villalba R (1997) Climatic influence on fire regimes along a rain-forest-to-xeric woodland gradient in northern Patagonia, Argentina. J Biogeogr 24: 35–47

 

Liu Y, Li J, Zhang H (2012) An ecosystem service valuation of land use change in Taiyuan City, China. Ecol Model 225: 127–132

 

Oddi FJ (2018) Fire regime. Encyclopedia of wildfires and Wildland-Urban Interface (WUI) fires. Springer, Switzerland. https://doi.org/10.1007/978-3-319-51727-8_73-1

 

Osman KT (2013) Forest Soils. Springer, Dordrecht https://doi.org/10.1007/978-3-319-02541-4_4

 

Pellizzaro G, Duce P, Ventura A, Zara P (2007) Seasonal variations of live moisture content and ignitability in shrubs of the Mediterranean Basin. Int J Wildland Fire 16(5): 633–641 https://doi.org/10.1071/WF05088

 

Peri PL, Dube F, Varella A (2016) Silvopastoral systems in southern Soutd America. Springer, Switzerland ahttps://doi.org/10.1007/978-3-319-24109-8_6

 

Peterson GD (2002) Contagious disturbance, ecological memory, and the emergence of landscape pattern. Ecosystems 5: 329–338 https://doi.org/10.1007/s10021-001-0077-1

 
Pinheiro J, Bates D, DebRoy S, Sarkar D, Core Team R (2018) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3: 1–137 https://CRAN.R-project.org/package=nlme. Accessed 12 Dec 2019
 

Pollet J, Omi PN (2002) Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests. Int J Wildland Fire 11: 1–10

 

Quinteros P, Hansen N, Kutschker A (2010) Composición y diversidad del sotobosque de ñire (Nothofagusantarctica) en función de la estructura del bosque. Ecol Austr 20(3): 225–234

 
R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed 12 Dec 2019
 

Regos A, Aquilué N, López I, Codina M, Retana J, Brotons L (2016) Synergies between forest biomass extraction for bioenergy and fire suppression in mediterranean ecosystems: insights from a storyline-and-simulation approach. Ecosystems 19(5): 786–802 https://doi.org/10.1007/s10021-016-9968-z

 

Reque JA, Sarasola M, Fernández ME (2007) Caracterización silvícola de ñirantales del norte de la Patagonia para la gestión forestal sostenible Silvicultural. Bosque 28(1): 33–45

 

Roig S, Del Río M, Cañellas I, Montero G (2005) Litter fall in Mediterranean Pinus pinaster Ait. Stands under different thinning regimes. Forest Ecol Manag 206(1–3): 179–190 https://doi.org/10.1016/j.foreco.2004.10.068

 

Rusch VE, Rusch GM, Goijman AP, Varela S, Claps L (2017) Ecosystem services to support environmental and socially sustainable decision-making. Ecol Austr 27: 162–176

 

Rusch VE, Sarasola M, Schlichter T (2005) Indicadores de Biodiversidad en Bosques Nothofagus. IDIA XXI Forestales, INTA 5(8): 8–14

 

Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev Camb Philos Soc 81(1): 1–31 https://doi.org/10.1017/S1464793105006846

 
Sil A, Fernandes PM, Rodrigues AP, Alonso JM, Honrado JP, Perera A, Azevedo JC (2019) Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosyst Serv https://doi.org/10.1016/j.ecoser.2019.100908
 

Spellerberg IANF, Fedor PJ (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the "Shannon-wiener" index. Glob Ecol Biogeogr 12(3): 177–179 https://doi.org/10.1046/j.1466-822X.2003.00015.x

 

Speziale KL, Ruggiero A, Ezcurra C (2010) Plant species richness-environment relationships across the Subantarctic-Patagonian transition zone. J Biogeogr 37(3): 449–464 https://doi.org/10.1111/j.1365-2699.2009.02213.x

 

Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Hohn P, Kappas M, Kohler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze S, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci 104(12): 4973–4978 https://doi.org/10.1073/pnas.0608409104

 

Stevens MHH, Shirk R, Steiner CE (2006) Water and fertilizer have opposite effects on plant species richness in a Mesic early successional habitat. Plant Ecol 183: 27–34

 

Tejera L, Davel MM (2004) Establecimiento de pino oregon en Patagonia. Patagonia Forestal 2: 9–12

 
Tiribelli F, Kitzberger T, Morales JM (2018) Journal of vegetation science fire succession promote alternative stable states and positive fire – vegetation feedbacks. J Veg Sci https://doi.org/10.1111/jvs.12620
 

Trentini CP, Campanello PI, Villagra M, Ritter L, Ares A, Goldstein G (2017) Thinning of loblolly pine plantations in subtropical Argentina: impact on microclimate and understory vegetation. Forest Ecol Manag 384: 236–247 https://doi.org/10.1016/j.foreco.2016.10.040

 

Vesterdal L, Dalsgaard M, Felby C, Raulund-Rasmussen K, Jørgensen BB (1995) Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecol Manag 77(1–3): 1–10 https://doi.org/10.1016/0378-1127(95)03579-Y

 

Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smitd GM (2009) Mixed effect models and Extentions in ecology witd R. Springer, Switzerland

Forest Ecosystems
Article number: 47
Cite this article:
Goldenberg MG, Oddi FJ, Gowda JH, et al. Effects of firewood harvesting intensity on biodiversity and ecosystem services in shrublands of northern Patagonia. Forest Ecosystems, 2020, 7(4): 47. https://doi.org/10.1186/s40663-020-00255-y

734

Views

10

Downloads

6

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 21 January 2020
Accepted: 10 June 2020
Published: 19 July 2020
© The Author(s) 2020.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return