PDF (16.3 MB)
Collect
Research | Open Access

Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain

Juan JuanGuerra-Hernández1,2()Adrián Pascual3
3edata, Centro de iniciativas empresariais, Fundación CEL. O Palomar s/n, 27004 Lugo, Spain.
Forest Research Centre, School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.
Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HA 96720, USA
Show Author Information

Abstract

Background

The NASA's Global Ecosystem Dynamics Investigation (GEDI) satellite mission aims at scanning forest ecosystems on a multi-temporal short-rotation basis. The GEDI data can validate and update statistics from nationwide airborne laser scanning (ALS). We present a case in the Northwest of Spain using GEDI statistics and nationwide ALS surveys to estimate forest dynamics in three fast-growing forest ecosystems comprising 211, 346 ha. The objectives were: i) to analyze the potential of GEDI to detect disturbances, ii) to investigate uncertainty source regarding non-positive height increments from the 2015–2017 ALS data to the 2019 GEDI laser shots and iii) to estimate height growth using polygons from the Forest Map of Spain (FMS). A set of 258 National Forest Inventory plots were used to validate the observed height dynamics.

Results

The spatio-temporal assessment from ALS surveying to GEDI scanning allowed the large-scale detection of harvests. The mean annual height growths were 0.79 (SD = 0.63), 0.60 (SD = 0.42) and 0.94 (SD = 0.75) m for Pinus pinaster, Pinus radiata and Eucalyptus spp., respectively. The median annual values from the ALS-GEDI positive increments were close to NFI-based growth values computed for Pinus pinaster and Pinus radiata, respectively. The effect of edge border, spatial co-registration of GEDI shots and the influence of forest cover in the observed dynamics were important factors to considering when processing ALS data and GEDI shots.

Discussion

The use of GEDI laser data provides valuable insights for forest industry operations especially when accounting for fast changes. However, errors derived from positioning, ground finder and canopy structure can introduce uncertainty to understand the detected growth patterns as documented in this study. The analysis of forest growth using ALS and GEDI would benefit from the generalization of common rules and data processing schemes as the GEDI mission is increasingly being utilized in the forest remote sensing community.

References

 

lvarez-González JG, Cañellas I, Alberdi I, Gadow KV, Ruiz-González AD (2014) National forest inventory and forest observational studies in Spain: applications to forest modeling. Forest Ecol Manag 316: 54-64. https://doi.org/10.1016/j.foreco.2013.09.007

 

Bontemps J-D, Bouriaud O (2013) Predictive approaches to forest site productivity: recent trends, challenges and future perspectives. Forestry 89: 109-128. https://doi.org/10.1093/forestry/cpt034

 

Coops NC, Kearney SP, Bolton DK, Radeloff VC (2018) Remotely-sensed productivity clusters capture global biodiversity patterns. Sci Rep 8: 16261. https://doi.org/10.1038/s41598-018-34162-8

 
Core Team R (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/. Accessed 15 Apr 2020
 
Diéguez-Aranda U, Alboreca AR, Castedo-Dorado F, Álvarez González JG, Barrio-Anta M, Crecente-Campo F, González González JM, Pérez-Cruzado C, Rodríguez Soalleiro R, López-Sánchez CA, Balboa-Murias MÁ, Gorgoso Varela JJ, Sánchez Rodríguez F (2009) Herramientas selvícolas para la gestión forestal sostenible en Galicia. Tórculo Artes Gráficas, S.A.
 
Diéguez-Aranda U, Alboreca AR, Castedo-Dorado F, González JÁ, Barrio-Anta M, Crecente-Campo F, González JG, Pérez-Cruzado C, Soalleiro RR, López-Sánchez CA (2012) Adenda. Herramientas selvícolas para la gestión forestal sostenible en Galicia. Actualización de modelos disponibles a fecha de 29/10/2012. https: //www.uxafores.com. Accessed on 15 May 2020
 

Dubayah R, Blair JB, Goetz S, Fatoyinbo L, Hansen M, Healey S, Hofton M, Hurtt G, Kellner J, Luthcke S, Armston J, Tang H, Duncanson L, Hancock S, Jantz P, Marselis S, Patterson PL, Qi W, Silva C (2020a) The global ecosystem dynamics investigation: high-resolution laser ranging of the earth's forests and topography. Sci Remote Sens 1(1): 100002. https://doi.org/10.1016/j.srs.2020.100002

 

Dubayah R, Hofton M, Blair MJB, Armston J, Tang H, Luthcke S (2020b) GEDI L2A elevation and height metrics data global footprint level V001[data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/GEDI/GEDI02_A.001

 

Duncanson L, Neuenschwander A, Hancock S, Thomas N, Fatoyinbo T, Simard M, Silva CA, Armston J, Luthcke SB, Hofton M, Kellner JR, Dubayah R (2020) Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens Environ 242: 111779. https://doi.org/10.1016/j.rse.2020.111779

 

Gonçalves-Seco L, González-Ferreiro E, Diéguez-Aranda U, Fraga-Bugallo B, Crecente R, Miranda M (2011) Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data. Int J Remote Sens 32: 9821-9841. https://doi.org/10.1080/01431161.2011.593583

 

González-Ferreiro E, Diéguez-Aranda U, Miranda D (2012) Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 85(2): 281-292. https://doi.org/10.1093/forestry/cps002

 

Guerra-Hernández J, Arellano-Pérez S, González-Ferreiro E, Pascual A, Altelarrea VS, Ruiz-González AD, Álvarez-González JG (2021) Developing a site index model for P. Pinaster stands in NW Spain by combining bi-temporal ALS data and environmental data. Forest Ecol Manag 481: 118690

 

Guerra-Hernández J, Görgens EB, García-Gutiérrez J, Rodriguez LCE, Tomé M, González-Ferreiro E (2016) Comparison of ALS based models for estimating aboveground biomass in three types of Mediterranean forest. Eur J Remote Sens 49(1): 185-204

 

Hancock S, Armston J, Hofton M, Sun X, Tang H, Duncanson LI, Kellner JR, Dubayah R (2019) The GEDI simulator: a large-footprint waveform lidar simulator for calibration and validation of spaceborne missions. Earth Space Sci 6(2): 294-310. https://doi.org/10.1029/2018EA000506 PubMed PubMed Central

 
Hofton M, Blair JB (2020) Algorithm Theoretical Basis Document (ATBD) for GEDI transmit and receive waveform processing for L1 and L2 products. https://lpdaac.usgs.gov/documents/581/GEDI_WF_ATBD_v1.0.pdf. Accessed 15 Apr 2020
 

Hofton MA, Rocchio LE, Blair JB, Dubayah R (2002) Validation of vegetation canopy Lidar sub-canopy topography measurements for a dense tropical forest. J Geodyn 34(3-4): 491-502. https://doi.org/10.1016/S0264-3707(02)00046-7

 

Hopkinson C, Chasmer L, Hall RJ (2008) The uncertainty in conifer plantation growth prediction from multi-temporal lidar datasets. Remote Sens Environ 112(3): 1168-1180. https://doi.org/10.1016/j.rse.2007.07.020

 

Hyde P, Dubayah R, Peterson B, Blair JB, Hofton M, Hunsaker C, Knox R, Walker W (2005) Mapping forest structure for wildlife habitat analysis using waveform lidar: validation of montane ecosystems. Remote Sens Environ 96(3): 427-437. https://doi.org/10.1016/j.rse.2005.03.005

 

Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geo Rem Sens 39: 969-975

 
Isenburg M (2020) LAStools-efficient tools for LiDAR processing. Version 200216. http://lastools.org. Accessed 15 Apr 2020
 

Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11(5): 393-399. https://doi.org/10.1046/j.1466-822x.2002.00303.x

 
Luthcke S, Rebold T, Thomas T, Pennington T (2020) Algorithm Theoretical Basis Document (ATBD) for GEDI waveform geolocation for L1 and L2 products. https://lpdaac.usgs.gov/documents/579/GEDI__WFGEO_ATBD_v1.0.pdf. Accessed 15 Apr 2020
 

Luthcke SB, David D, Rowlands MCJJ, Despina EP, Stoneking E (2000) Spaceborne laser-altimeter-pointing bias calibration from range residual analysis. J Spacecraft Rockets 37(3): 374-384

 

Luthcke SB, Rowlands DD, Williams TA, Sirota M (2005) Reduction of ICESat systematic geolocation errors and the impact on ice sheet elevation change detection. Geophys Res Lett 32(21). https://doi.org/10.1029/2005GL023689

 
MAGRAMA (2018) 5th Spanish National Forest Inventory, ministry of agriculture, food and environment. Ministerio de Agricultura, Alimentación y Medio Ambiente
 
Maltamo M, Naesset E, Vauhkonen J (2014) Forestry applications of airborne laser scanning: concepts and case studies, managing forest ecosystems, vol 27. Springer, Netherlands. https://doi.org/10.1007/978-94-017-8663-8
 
MAPA (2018) Mapa forestal de las especies productivas del norte peninsular. Escala 1: 25.000. Ministerio de Agricultura, Pesca y Alimentación. Dirección General de Desarrollo Rural, Innovación y Política Forestal. https://www.mapa.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/mapa-forestal-espana/metodologia_mfe_25.aspx. Accessed 15 Apr 2020
 
MATA (2019) Proyecto PNOA-LiDAR. Ministerio de Transportes, Movilidad y Agenda Urbana http://pnoa.ign.es/estado-del-proyecto-lidar. Accessed 15 Apr 2020
 

McRoberts RE, Chen Q, Gormanson DD, Walters BF (2018) The shelf-life of airborne laser scanning data for enhancing forest inventory inferences. Remote Sens Environ 206: 254-259. https://doi.org/10.1016/j.rse.2017.12.017

 

Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80: 88-99. https://doi.org/10.1016/S0034-4257(01)00290-5

 

Næsset E, Gobakken T, Holmgren J, Hyyppä H, Hyyppä J, Maltamo M, Nilsson M, Olsson H, Persson Å, Söderman U (2004) Laser scanning of forest resources: the Nordic experience. Scand J Forest Res 19: 482-499. https://doi.org/10.1080/02827580410019553

 

Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth M, Larsson S, Nilsson L, Eriksson J, Olsson H (2017) A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the national forest inventory. Rem Sens Environ 194: 447-454. https://doi.org/10.1016/j.rse.2016.10.022

 

Packalen P, Strunk J, Packalen T, Maltamo M, Mehtätalo L (2019) Resolution dependence in an area-based approach to forest inventory with airborne laser scanning. Rem Sens Environ 224: 192-201. https://doi.org/10.1016/j.rse.2019.01.022

 

Pascual A, Guerra-Hernández J, Cosenza DN, Sandoval V (2020) The role of improved ground positioning and forest structural complexity when performing forest inventory using airborne laser scanning. Remote Sens 12: 413. https://doi.org/10.3390/rs12030413

 

Pascual A, Guerra-Hernández J, Cosenza DN, Sandoval-Altelarrea V (2021) Using enhanced data co-registration to update Spanish National Forest Inventories (NFI) and to reduce training data under LiDAR-assisted inference. Int J Remote Sens 42(1): 126-147

 

Pascual A, Pukkala T, de Miguel S, Pesonen A, Packalen P (2019) Influence of size and shape of forest inventory units on the layout of harvest blocks in numerical forest planning. Eur J For Res 138:111-123. https://doi.org/10.1007/s10342-018-1157-5

 
Silva CA, Hamamura C, Valbuena R, Hancock S, Cardil A, Broadbent EN, Almeida DRA, Silva J, Klauberg C (2020) rGEDI: NASA's Global Ecosystem Dynamics Investigation (GEDI) data visualization and processing. version 0.1.2. https://CRAN.R-project.org/package=rGEDI. Accessed 1 Apr 2020
 

Silva CA, Hudak AT, Vierling LA, Klauberg C, Garcia M, Ferraz A, Keller M, Eitel J, Saatchi S (2017) Impacts of airborne lidar pulse density on estimating biomass stocks and changes in a selectively logged tropical forest. Remote Sens 9:1068. https://doi.org/10.3390/rs9101068

 

Silva CA, Saatchi S, Garcia M, Labriere N, Klauberg C, Ferraz A, Meyer V, Jeffery KJ, Abernethy K, White L (2018) Comparison of small-and large-footprint lidar characterization of tropical forest aboveground structure and biomass: a case study from Central Gabon. IEEE J-STARS 11(10): 3512-3526. https://doi.org/10.1109/JSTARS.2018.2816962

 

Socha J, Hawryło P, Stereńczak K, Miścicki S, Tymińska-Czabańska L, Młocek W, Gruba P (2020) Assessing the sensitivity of site index models developed using bi-temporal airborne laser scanning data to different top height estimates and grid cell sizes. Int J Appl Earth Obs Geoinformation 91:102129. https://doi.org/10.1016/j.jag.2020.102129

 

Wehr A, Lohr U (1999) Airborne laser scanningan introduction and overview. ISPRS J Photogramm 54:68-82. https://doi.org/10.1016/S0924-2716(99)00011-8

 

White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P (2016) Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42:619-641. https://doi.org/10.1080/07038992.2016.1207484

Forest Ecosystems
Article number: 14
Cite this article:
JuanGuerra-Hernández J, Pascual A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain. Forest Ecosystems, 2021, 8(1): 14. https://doi.org/10.1186/s40663-021-00291-2
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return