AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Plant carotenoids: recent advances and future perspectives

Tianhu Sun1,2Sombir Rao1,2Xuesong Zhou1,3Li Li1,2 ( )
Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
Show Author Information

Abstract

Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.

References

 

Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, et al. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci U S A. 2014;111:18084–9. https://doi.org/10.1073/pnas.1410801111.

 

Ablazov A, Mi J, Jamil M, Jia KP, Wang JY, Feng Q, et al. The Apocarotenoid Zaxinone Is a Positive Regulator of Strigolactone and Abscisic Acid Biosynthesis in Arabidopsis Roots. Front Plant Sci. 2020;11:578. https://doi.org/10.3389/fpls.2020.00578.

 

Abuauf H, Haider I, Jia K-P, Ablazov A, Mi J, Blilou I, et al. The Arabidopsis DWARF27 gene encodes an all-trans-/9-cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Sci. 2018;277:33–42. https://doi.org/10.1146/annurev-arplant-043014-114759.

 

Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science. 2008;320:794–7. https://doi.org/10.1126/science.1154800.

 

Ahrazem O, Gomez-Gomez L, Rodrigo MJ, Avalos J, Limon MC. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions. Int J Mol Sci. 2016;17:1781. https://doi.org/10.3390/ijms17111781.

 

Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435:824–7. https://doi.org/10.1038/nature03608.

 

Alagoz Y, Nayak P, Dhami N, Cazzonelli CI. cis-carotene biosynthesis, evolution and regulation in plants: The emergence of novel signaling metabolites. Arch Biochem Biophys. 2018;654:172–84. https://doi.org/10.1016/j.abb.2018.07.014.

 

Al-Babili S, Beyer P. Golden Rice--five years on the road--five years to go? Trends Plant Sci. 2005;10:565–73. https://doi.org/10.1016/j.tplants.2005.10.006.

 

Al-Babili S, Bouwmeester HJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol. 2015;66:161–86. https://doi.org/10.1146/annurev-arplant-043014-114759.

 

Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, et al. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science. 2012;335:1348–51. https://doi.org/10.1126/science.1218094.

 

Álvarez D, Voß B, Maass D, Wüst F, Schaub P, Beyer P, Welsch R. Carotenogenesis Is Regulated by 5'UTR-Mediated Translation of Phytoene Synthase Splice Variants. Plant Physiol. 2016;172(4):2314-2326. https://doi.org/10.1104/pp.16.01262

 

Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytol. 2019;221:309–25. https://doi.org/10.1111/nph.15362.

 

Anwar S, Brenya E, Alagoz Y, Cazzonelli CI. Epigenetic control of carotenogenesis during plant development. Crit Rev Plant Sci. 2021;40:23–48. https://doi.org/10.1080/07352689.2020.1866829.

 

Arango J, Jourdan M, Geoffriau E, Beyer P, Welsch R. Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell. 2014;26:2223–33. https://doi.org/10.1105/tpc.113.122127.

 

Arellano-Saab A, Bunsick M, Al Galib H, Zhao W, Schuetz S, Bradley JM, et al. Three mutations repurpose a plant karrikin receptor to a strigolactone receptor. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2103175118.

 

Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, et al. Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J. 2006;45:982–93. https://doi.org/10.1111/j.1365-313X.2006.02666.x.

 

Avendano-Vazquez AO, Cordoba E, Llamas E, San Roman C, Nisar N, De la Torre S, et al. An Uncharacterized Apocarotenoid-Derived Signal Generated in zeta-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. Plant Cell. 2014;26:2524–37. https://doi.org/10.1105/tpc.114.123349.

 

Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P, et al. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor-product balance. Plant Biotechnol J. 2016;14:195–205. https://doi.org/10.1111/pbi.12373.

 

Bari VK, Nassar JA, Kheredin SM, Gal-On A, Ron M, Britt A, et al. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci Rep. 2019;9:11438. https://doi.org/10.1038/s41598-019-47893-z.

 

Barja MV, Ezquerro M, Beretta S, Diretto G, Florez-Sarasa I, Feixes E, et al. Several geranylgeranyl diphosphate synthase isoforms supply metabolic substrates for carotenoid biosynthesis in tomato. New Phytol. 2021. https://doi.org/10.1111/nph.17283.

 

Barja MV, Rodriguez-Concepcion M. Plant geranylgeranyl diphosphate synthases: every (gene) family has a story. aBIOTECH. 2021:1–10. https://doi.org/10.1007/s42994-021-00050-5.

 

Baseggio M, Murray M, Magallanes-Lundback M, Kaczmar N, Chamness J, Buckler ES, et al. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome. 2020;13:e20008. https://doi.org/10.1002/tpg2.20008.

 

Beisel KG, Jahnke S, Hofmann D, Koppchen S, Schurr U, Matsubara S. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14CO2 pulse-chase labeling. Plant Physiol. 2010;152:2188–99. https://doi.org/10.1104/pp.109.151647.

 

Beltran JC, Stange C. Apocarotenoids: A New Carotenoid-Derived Pathway. Subcell Biochem. 2016;79:239–72. https://doi.org/10.1007/978-3-319-39126-7_9.

 

Berry HM, Rickett DV, Baxter CJ, Enfissi EMA, Fraser PD. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. J Exp Bot. 2019;70:2637–50. https://doi.org/10.1093/jxb/erz086.

 

Blázquez MA, Nelson DC, Weijers D. Evolution of plant hormone response pathways. Annu Rev Plant Biol. 2020;71:327–53. https://doi.org/10.1146/annurev-arplant-050718-100309.

 

Bou-Torrent J, Toledo-Ortiz G, Ortiz-Alcaide M, Cifuentes-Esquivel N, Halliday KJ, Martinez-Garcia JF, et al. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors. Plant Physiol. 2015;169:1584–94. https://doi.org/10.1104/pp.15.00552.

 

Breitenbach J, Gerjets T, Sandmann G. Catalytic properties and reaction mechanism of the CrtO carotenoid ketolase from the cyanobacterium Synechocystis sp. PCC 6803. Arch Biochem Biophys. 2013;529:86–91. https://doi.org/10.1016/j.abb.2012.11.003.

 

Bürger M, Chory J. The many models of strigolactone signaling. Trends Plant Sci. 2020;25:395–405. https://doi.org/10.1016/j.tplants.2019.12.009.

 

Bykowski M, Mazur R, Wojtowicz J, Suski S, Garstka M, Mostowska A, et al. Too rigid to fold: Carotenoid-dependent decrease in thylakoid fluidity hampers the formation of chloroplast grana. Plant Physiol. 2021;185:210–27. https://doi.org/10.1093/plphys/kiaa009.

 

Camagna M, Grundmann A, Bar C, Koschmieder J, Beyer P, Welsch R. Enzyme Fusion Removes Competition for Geranylgeranyl Diphosphate in Carotenogenesis. Plant Physiol. 2019;179:1013–27. https://doi.org/10.1104/pp.18.01026.

 

Cao H, Luo H, Yuan H, Eissa MA, Thannhauser TW, Welsch R, et al. A Neighboring Aromatic-Aromatic Amino Acid Combination Governs Activity Divergence between Tomato Phytoene Synthases. Plant Physiol. 2019;180:1988–2003. https://doi.org/10.1104/pp.19.00384.

 

Cardona T, Sanchez-Baracaldo P, Rutherford AW, Larkum AW. Early Archean origin of Photosystem Ⅱ. Geobiology. 2019;17:127–50. https://doi.org/10.1111/gbi.12322.

 

Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, et al. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell. 2009;21:39–53. https://doi.org/10.1105/tpc.108.063131.

 

Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, Lee J, et al. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. Elife. 2020;9:e45310. https://doi.org/10.7554/eLife.45310.

 

Cazzonelli CI, Pogson BJ. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15:266–74. https://doi.org/10.1016/j.tplants.2010.02.003.

 

Chayut N, Yuan H, Ohali S, Meir A, Sa'ar U, Tzuri G, et al. Distinct Mechanisms of the ORANGE Protein in Controlling Carotenoid Flux. Plant Physiol. 2017;173:376–89. https://doi.org/10.1104/pp.16.01256.

 

Chayut N, Yuan H, Ohali S, Meir A, Yeselson Y, Portnoy V, et al. A bulk segregant transcriptome analysis reveals metabolic and cellular processes associated with Orange allelic variation and fruit beta-carotene accumulation in melon fruit. BMC Plant Biol. 2015;15:274. https://doi.org/10.1186/s12870-015-0661-8.

 

Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, Zhou X, et al. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. Hortic Res. 2021;8:112. https://doi.org/10.1038/s41438-021-00547-6.

 

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol. 2020;62:25–54. https://doi.org/10.1111/jipb.12899.

 

Chen WC, Wang Q, Cao TJ, Lu S. UBC19 is a new interacting protein of ORANGE for its nuclear localization in Arabidopsis thaliana. Plant Signal Behav. 2021;16:1964847. https://doi.org/10.1080/15592324.2021.1964847.

 

Cheng S, Xian W, Fu Y, Marin B, Keller J, Wu T, et al. Genomes of Subaerial Zygnematophyceae Provide Insights into Land Plant Evolution. Cell. 2019;179:1057–1067 e1014. https://doi.org/10.1016/j.cell.2019.10.019.

 

Coe KM, Ellison S, Senalik D, Dawson J, Simon P. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Theor Appl Genet. 2021;134:3351–62. https://doi.org/10.1007/s00122-021-03901-3.

 

Collini E. Carotenoids in Photosynthesis: The Revenge of the “Accessory” Pigments. Chem. 2019;5:494–5. https://doi.org/10.1016/j.chempr.2019.02.013.

 

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61:651–79. https://doi.org/10.1146/annurev-arplant-042809-112122.

 

D'Alessandro S, Havaux M. Sensing beta-carotene oxidation in photosystem Ⅱ to master plant stress tolerance. New Phytol. 2019;223:1776–83. https://doi.org/10.1111/nph.15924.

 

D'Alessandro S, Ksas B, Havaux M. Decoding beta-Cyclocitral-Mediated Retrograde Signaling Reveals the Role of a Detoxification Response in Plant Tolerance to Photooxidative Stress. Plant Cell. 2018;30:2495–511. https://doi.org/10.1105/tpc.18.00578.

 

D'Andrea L, Simon-Moya M, Llorente B, Llamas E, Marro M, Loza-Alvarez P, et al. Interference with Clp protease impairs carotenoid accumulation during tomato fruit ripening. J Exp Bot. 2018;69:1557–68. https://doi.org/10.1093/jxb/erx491.

 

de Jesus V, Qureshi NS, Warhaut S, Bains JK, Dietz MS, Heilemann M, et al. Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation. Nat Commun. 2021;12:1–7. https://doi.org/10.1038/s41467-021-25024-5.

 

de Vries J, Curtis BA, Gould SB, Archibald JM. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci U S A. 2018;115:E3471–80. https://doi.org/10.1073/pnas.1719230115.

 

Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, et al. Origin of strigolactones in the green lineage. New Phytol. 2012;195:857–71. https://doi.org/10.1111/j.1469-8137.2012.04209.x.

 

Demurtas OC, de Brito FR, Diretto G, Ferrante P, Frusciante S, Pietrella M, et al. ABCC Transporters Mediate the Vacuolar Accumulation of Crocins in Saffron Stigmas. Plant Cell. 2019;31:2789–804. https://doi.org/10.1105/tpc.19.00193.

 

Dhami N, Cazzonelli CI. Environmental impacts on carotenoid metabolism in leaves. Plant Growth Regul. 2020:1–23. https://doi.org/10.1007/s10725-020-00661-w.

 

Dhar MK, Mishra S, Bhat A, Chib S, Kaul S. Plant carotenoid cleavage oxygenases: structure-function relationships and role in development and metabolism. Brief Funct Genomics. 2020;19:1–9. https://doi.org/10.1093/bfgp/elz037.

 

Dickinson AJ, Lehner K, Mi J, Jia K-P, Mijar M, Dinneny J, et al. β-Cyclocitral is a conserved root growth regulator. Proc Natl Acad Sci U S A. 2019;116:10563–7. https://doi.org/10.1073/pnas.1821445116.

 

Diretto G, Ahrazem O, Rubio-Moraga A, Fiore A, Sevi F, Argandona J, et al. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). New Phytol. 2019;224:725–40. https://doi.org/10.1111/nph.16079.

 

Diretto G, Frusciante S, Fabbri C, Schauer N, Busta L, Wang Z, et al. Manipulation of β-carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnol J. 2020;18:1185–99. https://doi.org/10.1111/pbi.13283.

 

Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, et al. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 2007;7:11. https://doi.org/10.1186/1471-2229-7-11.

 

Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci. 2006;25:417–40. https://doi.org/10.1080/07352680600899973.

 

Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, et al. PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res. 2010;38:D828–34. https://doi.org/10.1093/nar/gkp810.

 

Dutta S, Muthusamy V, Chhabra R, Baveja A, Zunjare RU, Mondal TK, et al. Low expression of carotenoids cleavage dioxygenase 1 (ccd1) gene improves the retention of provitamin-A in maize grains during storage. Mol Gen Genomics. 2021;296:141–53. https://doi.org/10.1007/s00438-020-01734-1.

 

Edwards MB, Choi GP, Derieg NJ, Min Y, Diana AC, Hodges SA, et al. Genetic architecture of floral traits in bee-and hummingbird-pollinated sister species of Aquilegia (columbine). bioRxiv. 2021. https://doi.org/10.1101/2021.04.12.439277.

 

Egea I, Barsan C, Bian W, Purgatto E, Latche A, Chervin C, et al. Chromoplast differentiation: current status and perspectives. Plant Cell Physiol. 2010;51:1601–11. https://doi.org/10.1093/pcp/pcq136.

 

Egea I, Bian W, Barsan C, Jauneau A, Pech JC, Latche A, et al. Chloroplast to chromoplast transition in tomato fruit: spectral confocal microscopy analyses of carotenoids and chlorophylls in isolated plastids and time-lapse recording on intact live tissue. Ann Bot. 2011;108:291–7. https://doi.org/10.1093/aob/mcr140.

 

Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys. 2018;652:18–26. https://doi.org/10.1016/j.abb.2018.06.001.

 

Ellison S, Luby C, Corak K, Coe K, Senalik D, Iorizzo M, et al. Association analysis reveals the importance of the Or gene in carrot (Daucus carota L.) carotenoid presence and domestication. Genetics. 2018;210:1–12. https://doi.org/10.1534/genetics.118.301299.

 

Enfissi EM, Nogueira M, Bramley PM, Fraser PD. The regulation of carotenoid formation in tomato fruit. Plant J. 2017;89:774–88. https://doi.org/10.1111/tpj.13428.

 
Eroglu A. Apocarotenoids modulate retinoid receptors: The Ohio State University; 2012.
 

Escobar-Tovar L, Sierra J, Hernandez-Munoz A, McQuinn RP, Mathioni S, Cordoba E, et al. Deconvoluting apocarotenoid-mediated retrograde signaling networks regulating plastid translation and leaf development. Plant J. 2021;105:1582–99. https://doi.org/10.1111/tpj.15134.

 

Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem. 2001;276:22901–9. https://doi.org/10.1074/jbc.M100854200.

 

Falchi R, Vendramin E, Zanon L, Scalabrin S, Cipriani G, Verde I, et al. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. Plant J. 2013;76:175–87. https://doi.org/10.1111/tpj.12283.

 

Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G. Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol. 2013;163:986–98. https://doi.org/10.1104/pp.113.224733.

 

Feder A, Chayut N, Gur A, Freiman Z, Tzuri G, Meir A, et al. The role of carotenogenic metabolic flux in carotenoid accumulation and chromoplast differentiation: lessons from the melon fruit. Front Plant Sci. 2019;10:1250. https://doi.org/10.3389/fpls.2019.01250.

 

Felemban A, Braguy J, Zurbriggen MD, Al-Babili S. Apocarotenoids Involved in Plant Development and Stress Response. Front Plant Sci. 2019;10:1168. https://doi.org/10.3389/fpls.2019.01168.

 

Finkelstein R. Abscisic Acid synthesis and response. Arabidopsis Book. 2013;11:e0166. https://doi.org/10.1199/tab.0166.

 

Fiorilli V, Wang JY, Bonfante P, Lanfranco L, Al-Babili S. Apocarotenoids: Old and New Mediators of the Arbuscular Mycorrhizal Symbiosis. Front Plant Sci. 2019;10:1186. https://doi.org/10.3389/fpls.2019.01186.

 

Floris D, Kuhlbrandt W. Molecular landscape of etioplast inner membranes in higher plants. Nat Plants. 2021;7:514–23. https://doi.org/10.1038/s41477-021-00896-z.

 

Frachon L, Stirling SA, Schiestl FP, Dudareva N. Combining biotechnology and evolution for understanding the mechanisms of pollinator attraction. Curr Opin Biotechnol. 2021;70:213–9. https://doi.org/10.1016/j.copbio.2021.06.004.

 

Frank HA, Cogdell RJ. Carotenoids in photosynthesis. Photochem Photobiol. 1996;63:257–64. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x.

 

Fraser PD, Schuch W, Bramley PM. Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts--partial purification and biochemical properties. Planta. 2000;211:361–9. https://doi.org/10.1007/s004250000293.

 

Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol. 1993;22:589–602. https://doi.org/10.1007/BF00047400.

 

Frusciante S, Diretto G, Bruno M, Ferrante P, Pietrella M, Prado-Cabrero A, et al. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proc Natl Acad Sci U S A. 2014;111:12246–51. https://doi.org/10.1073/pnas.1404629111.

 

Fujiwara Y, Hashimoto K, Manabe K, Maoka T. Structures of tobiraxanthins A1, A2, A3, B, C and D, new carotenoids from the seeds of Pittosporum tobira. Tetrahedron Lett. 2002;43:4385–8. https://doi.org/10.1016/S0040-4039(02)00779-7.

 

Galpaz N, Burger Y, Lavee T, Tzuri G, Sherman A, Melamed T, et al. Genetic and chemical characterization of an EMS induced mutation in Cucumis melo CRTISO gene. Arch Biochem Biophys. 2013;539:117–25. https://doi.org/10.1016/j.abb.2013.08.006.

 

Gao J, Yang S, Tang K, Li G, Gao X, Liu B, et al. GmCCD4 controls carotenoid content in soybeans. Plant Biotechnol J. 2021;19:801–13. https://doi.org/10.1111/pbi.13506.

 

Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51:1044–51. https://doi.org/10.1038/s41588-019-0410-2.

 

García-Cerdán JG, Schmid EM, Takeuchi T, McRae I, McDonald KL, Yordduangjun N, et al. Chloroplast Sec14-like 1 (CPSFL1) is essential for normal chloroplast development and affects carotenoid accumulation in Chlamydomonas. Proc Natl Acad Sci U S A. 2020;117:12452–63. https://doi.org/10.1073/pnas.1916948117.

 

Gemenet DC, da Silva Pereira G, De Boeck B, Wood JC, Mollinari M, Olukolu BA, et al. Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated beta-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]. Theor Appl Genet. 2020;133:23–36. https://doi.org/10.1007/s00122-019-03437-7.

 

Ghosh S, Bishop MM, Roscioli JD, LaFountain AM, Frank HA, Beck WF. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin-Chlorophyll a Protein. J Phys Chem Lett. 2017;8:463–9. https://doi.org/10.1021/acs.jpclett.6b02881.

 

Giossi C, Cartaxana P, Cruz S. Photoprotective role of neoxanthin in plants and algae. Molecules. 2020;25:4617. https://doi.org/10.3390/molecules25204617.

 

Giuliano G. Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotechnol. 2017;44:169–80. https://doi.org/10.1016/j.copbio.2017.02.001.

 

Goff SA, Klee HJ. Plant volatile compounds: sensory cues for health and nutritional value? Science. 2006;311:815–9. https://doi.org/10.1016/j.foodchem.2021.131234.

 

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, et al. Strigolactone inhibition of shoot branching. Nature. 2008;455:189–94. https://doi.org/10.1038/nature07271.

 

Gong J, Zeng Y, Meng Q, Guan Y, Li C, Yang H, et al. Red light-induced kumquat fruit colouration is attributable to increased carotenoid metabolism regulated by FcrNAC22. J Exp Bot. 2021. https://doi.org/10.1093/jxb/erab283.

 

Gonzalez-Jorge S, Ha S-H, Magallanes-Lundback M, Gilliland LU, Zhou A, Lipka AE, et al. Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. Plant Cell. 2013;25:4812–26. https://doi.org/10.1105/tpc.113.119677.

 

Grabsztunowicz M, Koskela MM, Mulo P. Post-translational modifications in regulation of chloroplast function: recent advances. Front Plant Sci. 2017;8:240. https://doi.org/10.3389/fpls.2017.00240.

 

Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science. 2008;319:330–3. https://doi.org/10.1126/science.1150255.

 

Harrison EH, Quadro L. Apocarotenoids: Emerging Roles in Mammals. Annu Rev Nutr. 2018;38:153–72. https://doi.org/10.1146/annurev-nutr-082117-051841.

 

Hashimoto H, Uragami C, Cogdell RJ. Carotenoids and Photosynthesis. Subcell Biochem. 2016;79:111–39. https://doi.org/10.1007/978-3-319-39126-7_4.

 

Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3:147–51. https://doi.org/10.1016/S1360-1385(98)01200-X.

 

Havaux M. beta-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. Plant Physiol Biochem. 2020;155:35–41. https://doi.org/10.1016/j.plaphy.2020.07.032.

 

Havaux M, Gruszecki WI. Heat-and light-induced chlorophyll a fluorescence changes in potato leaves containing high or low levels of the carotenoid zeaxanthin: Indications of a regulatory effect of zeaxanthin on thylakoid membrane fluidity. Photochem Photobiol. 1993;58:607–14. https://doi.org/10.1111/j.1751-1097.1993.tb04940.x.

 

Hemmerlin A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci. 2013;203:41–54. https://doi.org/10.1016/j.plantsci.2012.12.008.

 

Hermanns AS, Zhou XS, Xu Q, Tadmor Y, Li L. Carotenoid Pigment Accumulation in Horticultural Plants. Hortic Plant J. 2020;6:343–60. https://doi.org/10.1016/j.hpj.2020.10.002.

 

Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science. 2005;307:433–6. https://doi.org/10.1126/science.1105833.

 

Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C, et al. Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am J Bot. 2007;94:12–24. https://doi.org/10.3732/ajb.94.1.12.

 

Hou X, Rivers J, Leon P, McQuinn RP, Pogson BJ. Synthesis and Function of Apocarotenoid Signals in Plants. Trends Plant Sci. 2016;21:792–803. https://doi.org/10.1016/j.tplants.2016.06.001.

 

Irfan M, Chavez B, Rizzo P, D’Auria JC, Moghe GD. Evolution-aided engineering of plant specialized metabolism. aBIOTECH. 2021. https://doi.org/10.1007/s42994-021-00052-3.

 

Isaacson T, Ronen G, Zamir D, Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of b-carotene and xanthophylls in plants. Plant Cell. 2002;14:333–42. https://doi.org/10.1105/tpc.010303.

 

Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem Ⅱ. Biochim Biophys Acta. 2012;1817:182–93. https://doi.org/10.1016/j.bbabio.2011.04.012.

 

Jia KP, Baz L, Al-Babili S. From carotenoids to strigolactones. J Exp Bot. 2018;69:2189–204. https://doi.org/10.1093/jxb/erx476.

 

Jia K-P, Dickinson AJ, Mi J, Cui G, Xiao TT, Kharbatia NM, et al. Anchorene is a carotenoid-derived regulatory metabolite required for anchor root formation in Arabidopsis. Sci Adv. 2019a;5:eaaw6787. https://doi.org/10.1126/sciadv.aaw6787.

 

Jia K-P, Li C, Bouwmeester HJ, Al-Babili S. Strigolactone biosynthesis and signal transduction. Strigolactones-Biol Appl. 2019b:1–45. https://doi.org/10.1007/978-3-030-12153-2_1.

 

Jia K-P, Mi J, Ablazov A, Ali S, Yang Y, Balakrishna A, et al. Iso-anchorene is an endogenous metabolite that inhibits primary root growth in Arabidopsis. Plant J. 2021;10:15271. https://doi.org/10.1111/tpj.15271.

 

Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature. 2013;504:401–5. https://doi.org/10.1038/nature12870.

 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9. https://doi.org/10.1038/s41586-021-03819-2.

 

Kachanovsky DE, Filler S, Isaacson T, Hirschberg J. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci U S A. 2012;109:19021–6. https://doi.org/10.1073/pnas.1214808109.

 

Kang C, He S, Zhai H, Li R, Zhao N, Liu Q. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Front Plant Sci. 2018;9:1307. https://doi.org/10.3389/fpls.2018.01307.

 

Kay KM, Sargent RD. The Role of Animal Pollination in Plant Speciation: Integrating Ecology, Geography, and Genetics. Annu Rev Ecol Evol Syst. 2009;40:637–56. https://doi.org/10.1146/annurev.ecolsys.110308.120310.

 

Kim HS, Ji CY, Lee CJ, Kim SE, Park SC, Kwak SS. Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J Exp Bot. 2018;69:3393–400. https://doi.org/10.1093/jxb/ery023.

 

Kim SE, Lee CJ, Park SU, Lim YH, Park WS, Kim HJ, et al. Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants. Antioxidants (Basel). 2021;10:51. https://doi.org/10.3390/antiox10010051.

 

Koschmieder J, Wüst F, Schaub P, Álvarez D, Trautmann D, Krischke M, et al. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiol. 2021;185:331–51. https://doi.org/10.1093/plphys/kiaa033.

 

Lang Z, Wang Y, Tang K, Tang D, Datsenka T, Cheng J, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. Proc Natl Acad Sci U S A. 2017;114:E4511–9. https://doi.org/10.1073/pnas.1705233114.

 

Lee SY, Jang SJ, Jeong HB, Lee SY, Venkatesh J, Lee JH, et al. A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). Plant J. 2021. https://doi.org/10.1111/tpj.15264.

 

Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF. A novel gene mutation that confers abnormal patterns of beta-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J. 2001;26:59–67. https://doi.org/10.1046/j.1365-313x.2001.01008.x.

 

Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C, et al. The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant. 2012;5:339–52. https://doi.org/10.1093/mp/ssr099.

 

Li L, Yuan H. Chromoplast biogenesis and carotenoid accumulation. Arch Biochem Biophys. 2013;539:102–9. https://doi.org/10.1016/j.abb.2013.07.002.

 
Li L, Yuan H, Zeng Y, Xu Q. Plastids and Carotenoid Accumulation. Carotenoids Nat. 2016:273–93. Springer. https://doi.org/10.1007/978-3-319-39126-7_10.
 

Li Y, Beisson F, Pollard M, Ohlrogge J. Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation. Phytochemistry. 2006;67:904–15. https://doi.org/10.1016/j.phytochem.2006.02.015.

 

Li Z, Jiang G, Liu X, Ding X, Zhang D, Wang X, et al. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytol. 2020;227:1138–56. https://doi.org/10.1111/nph.16590.

 

Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol. 2021;41:513–34. https://doi.org/10.1080/07388551.2021.1873242.

 

Liang MH, Zhu J, Jiang JG. Carotenoids biosynthesis and cleavage related genes from bacteria to plants. Crit Rev Food Sci Nutr. 2018;58:2314–33. https://doi.org/10.1080/10408398.2017.1322552.

 

Liang Q, Deng H, Li Y, Liu Z, Shu P, Fu R, et al. Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening-related genes in tomato. New Phytol. 2020;227:485–97. https://doi.org/10.1111/nph.16550.

 

Ling Q, Sadali NM, Soufi Z, Zhou Y, Huang B, Zeng Y, et al. The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato. Nat Plants. 2021;7:655–66. https://doi.org/10.1038/s41477-021-00916-y.

 

Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, et al. GREEN STRIPE, encoding methylated TOMATO AGAMOUS-LIKE 1, regulates chloroplast development and Chl synthesis in fruit. New Phytol. 2020;228:302–17. https://doi.org/10.1111/nph.16705.

 

Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, et al. Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot. 2013;64:1967–81. https://doi.org/10.1093/jxb/ert056.

 

Liu L, Shao Z, Zhang M, Wang Q. Regulation of carotenoid metabolism in tomato. Mol Plant. 2015;8:28–39. https://doi.org/10.1016/j.molp.2014.11.006.

 

Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 2004;428:287–92. https://doi.org/10.1038/nature02373.

 

Llamas E, Pulido P, Rodriguez-Concepcion M. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis. PLoS Genet. 2017;13:e1007022. https://doi.org/10.1371/journal.pgen.1007022.

 

Llorente B, Martinez-Garcia JF, Stange C, Rodriguez-Concepcion M. Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light. Curr Opin Plant Biol. 2017;37:49–55. https://doi.org/10.1016/j.pbi.2017.03.011.

 

Llorente B, Torres-Montilla S, Morelli L, Florez-Sarasa I, Matus JT, Ezquerro M, et al. Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development. Proc Natl Acad Sci U S A. 2020;117:21796–803. https://doi.org/10.1073/pnas.2004405117.

 

Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J, Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot. 2008a;59:213–23. https://doi.org/10.1093/jxb/erm299.

 

Lopez AB, Yang Y, Thannhauser TW, Li L. Phytoene desaturase is present in a large protein complex in the plastid membrane. Physiol Plant. 2008b;133:190–8. https://doi.org/10.1111/j.1399-3054.2008.01058.x.

 

López AJ, Frusciante S, Niza E, Ahrazem O, Rubio-Moraga Á, Diretto G, et al. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron (Crocus sativus L.). Int J Mol Sci. 2021;22:8815. https://doi.org/10.3390/ijms22168815.

 

Lu S, Van Eck J, Zhou X, Lopex AB, O'Halloran DM, Cosman KM, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high-levels of b-carotene accumulation. Plant Cell. 2006;18:3594–605. https://doi.org/10.1105/tpc.106.046417.

 

Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, et al. A citrus phosphate starvation response factor CsPHL3 negatively regulates carotenoid metabolism. Plant Cell Physiol. 2021a. https://doi.org/10.1093/pcp/pcab007.

 

Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, et al. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. J Exp Bot. 2021b;72:3028–43. https://doi.org/10.1093/jxb/erab045.

 

Luan YT, Fu XM, Lu PJ, Grierson D, Xu CJ. Molecular Mechanisms Determining the Differential Accumulation of Carotenoids in Plant Species and Varieties. Crit Rev Plant Sci. 2020;39:125–39. https://doi.org/10.1080/07352689.2020.1768350.

 

Luo Z, Zhang J, Li J, Yang C, Wang T, Ouyang B, et al. A STAY-GREEN protein SlSGR1 regulates lycopene and beta-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 2013;198:442–52. https://doi.org/10.1111/nph.12175.

 

Maass D, Arango J, Wast F, Beyer P, Welsch R. Carotenoid crystal formation in Arabidopsis and carro troots caused by increased phytoene synthase protein levels. PLoS ONE. 2009;4:e6373. https://doi.org/10.1371/journal.pone.0006373.

 

Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 2011;157:1568–79. https://doi.org/10.1104/pp.111.181107.

 

Meneghin E, Volpato A, Cupellini L, Bolzonello L, Jurinovich S, Mascoli V, et al. Coherence in carotenoid-to-chlorophyll energy transfer. Nat Commun. 2018;9:3160. https://doi.org/10.1038/s41467-018-05596-5.

 

Meng N, Wei Y, Gao Y, Yu K, Cheng J, Li XY, et al. Characterization of Transcriptional Expression and Regulation of Carotenoid Cleavage Dioxygenase 4b in Grapes. Front Plant Sci. 2020;11:483. https://doi.org/10.3389/fpls.2020.00483.

 

Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, et al. The MYB Activator WHITE PETAL1 Associates with MtTT8 and MtWD40-1 to Regulate Carotenoid-Derived Flower Pigmentation in Medicago truncatula. Plant Cell. 2019;31:2751–67. https://doi.org/10.1105/tpc.19.00480.

 

Mi J, Jia KP, Wang JY, Al-Babili S. A rapid LC-MS method for qualitative and quantitative profiling of plant apocarotenoids. Anal Chim Acta. 2018;1035:87–95. https://doi.org/10.1016/j.aca.2018.07.002.

 

Mitra S, Estrada-Tejedor R, Volke DC, Phillips MA, Gershenzon J, Wright LP. Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2021;118. https://doi.org/10.1073/pnas.2008747118.

 

Miyagishima SY. A Multifunctional Modulator Coordinates Nuclear Transcription and Plastid Metabolism and Proliferation. Mol Plant. 2020;13:820–2. https://doi.org/10.1016/j.molp.2020.05.008.

 

Moreno JC, Mi J, Agrawal S, Kossler S, Tureckova V, Tarkowska D, et al. Expression of a carotenogenic gene allows faster biomass production by redesigning plant architecture and improving photosynthetic efficiency in tobacco. Plant J. 2020;103:1967–84. https://doi.org/10.1111/tpj.14909.

 

Moreno JC, Mi J, Alagoz Y, Al-Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. Plant J. 2021;105:351–75. https://doi.org/10.1111/tpj.15102.

 

Mortimer CL, Misawa N, Ducreux L, Campbell R, Bramley PM, Taylor M, et al. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Plant Biotechnol J. 2016;14:140–52. https://doi.org/10.1111/pbi.12365.

 

Murata M, Nakai Y, Kawazu K, Ishizaka M, Kajiwara H, Abe H, et al. Loliolide, a Carotenoid Metabolite, Is a Potential Endogenous Inducer of Herbivore Resistance. Plant Physiol. 2019;179:1822–33. https://doi.org/10.1104/pp.18.00837.

 

Murchie EH, Ruban AV. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J. 2020;101:885–96. https://doi.org/10.1111/tpj.14601.

 

Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J. 2014;78:80–93. https://doi.org/10.1111/tpj.12451.

 

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. Mol Plant. 2015;8:68–82. https://doi.org/10.1016/j.molp.2014.12.007.

 

Niyogi KK, Truong TB. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol. 2013;16:307–14. https://doi.org/10.1016/j.pbi.2013.03.011.

 

Nogueira M, Enfissi EMA, Welsch R, Beyer P, Zurbriggen MD, Fraser PD. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: A new tool for engineering ketocarotenoids. Metab Eng. 2019;52:243–52. https://doi.org/10.1016/j.ymben.2018.12.006.

 

Ohmiya A, Kato M, Shimada T, Nashima K, Kishimoto S, Nagata M. Molecular Basis of Carotenoid Accumulation in Horticultural Crops. Hortic J. 2019;88:135–49. https://doi.org/10.2503/hortj.UTD-R003.

 

Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 2006;142:1193–201. https://doi.org/10.1104/pp.106.087130.

 

Osorio CE. The Role of Orange Gene in Carotenoid Accumulation: Manipulating Chromoplasts Toward a Colored Future. Front Plant Sci. 2019;10:1235. https://doi.org/10.3389/fpls.2019.01235.

 

Owen CR, Bradshaw HD. Induced mutations affecting pollinator choice in Mimulus lewisii (Phrymaceae). Arthropod Plant Interact. 2011;5:235–44. https://doi.org/10.1007/s11829-011-9133-8.

 

Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol. 2005;23:482–7. https://doi.org/10.1038/nbt1082.

 

Pan X, Cao P, Su X, Liu Z, Li M. Structural analysis and comparison of light-harvesting complexes Ⅰ and Ⅱ. Biochim Biophys Acta Bioenerg. 2020;1861:148038. https://doi.org/10.1016/j.bbabio.2019.06.010.

 

Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol. 2011;18:309–15. https://doi.org/10.1038/nsmb.2008.

 

Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ. Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell. 2002;14:321–32. https://doi.org/10.1105/tpc.010302.

 

Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z, et al. Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep. 2016;6:33563. https://doi.org/10.1038/srep33563.

 

Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009;324:1068–71. https://doi.org/10.1126/science.1173041.

 

Perreau F, Frey A, Effroy-Cuzzi D, Savane P, Berger A, Gissot L, et al. ABSCISIC ACID-DEFICIENT4 has an essential function in both cis-violaxanthin and cis-neoxanthin synthesis. Plant Physiol. 2020;184:1303–16. https://doi.org/10.1104/pp.20.00947.

 

Pipitone R, Eicke S, Pfister B, Glauser G, Falconet D, Uwizeye C, et al. A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. Elife. 2021;10:e62709. https://doi.org/10.7554/eLife.62709.

 

Proctor MS, Pazdernik M, Jackson PJ, Pilny J, Martin EC, Dickman MJ, et al. Xanthophyll carotenoids stabilise the association of cyanobacterial chlorophyll synthase with the LHC-like protein HliD. Biochem J. 2020;477:4021–36. https://doi.org/10.1042/BCJ20200561.

 

Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, et al. Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Development. 2011;138:1531–9. https://doi.org/10.1242/dev.058495.

 

Pulido P, Llamas E, Llorente B, Ventura S, Wright LP, Rodriguez-Concepcion M. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis. PLoS Genet. 2016;12:e1005824. https://doi.org/10.1371/journal.pgen.1005824.

 

Pulido P, Toledo-Ortiz G, Phillips MA, Wright LP, Rodriguez-Concepcion M. Arabidopsis J-protein J20 delivers the first enzyme of the plastidial isoprenoid pathway to protein quality control. Plant Cell. 2013;25:4183–94. https://doi.org/10.1105/tpc.113.113001.

 

Qin X, Wang W, Chang L, Chen J, Wang P, Zhang J, et al. Isolation and characterization of a PSI-LHCI super-complex and its sub-complexes from a siphonaceous marine green alga, Bryopsis Corticulans. Photosynth Res. 2015;123:61–76. https://doi.org/10.1007/s11120-014-0039-z.

 

Quian-Ulloa R, Stange C. Carotenoid Biosynthesis and Plastid Development in Plants: The Role of Light. Int J Mol Sci. 2021;22:1184. https://doi.org/10.3390/ijms22031184.

 

Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylides C, Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci U S A. 2012;109:5535–40. https://doi.org/10.1073/pnas.1115982109.

 

Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, Li S, et al. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biol. 2020;20:1–8. https://doi.org/10.1186/s12870-020-2263-3.

 

Rodrigo MJ, Lado J, Alós E, Alquézar B, Dery O, Hirschberg J, et al. A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the “Pinalate” sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. BMC Plant Biol. 2019;19:1–16. https://doi.org/10.1186/s12870-019-2078-2.

 

Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res. 2018;70:62–93. https://doi.org/10.1016/j.plipres.2018.04.004.

 

Rodriguez-Villalon A, Gas E, Rodriguez-Concepcion M. Phytoene synthase activity controls the biosynthesis of carotenoids and the supply of their metabolic precursors in dark-grown Arabidopsis seedlings. Plant J. 2009;60:424–35. https://doi.org/10.1111/j.1365-313X.2009.03966.x.

 

Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A. 2000;97:11102–7. https://doi.org/10.1073/pnas.190177497.

 

Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 1999;17:341–51. https://doi.org/10.1046/j.1365-313x.1999.00381.x.

 

Ruban AV, Murchie EH. Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta Bioenerg. 2012;1817:977–82. https://doi.org/10.1016/j.bbabio.2012.03.026.

 

Ruiz-Sola MA, Barja MV, Manzano D, Llorente B, Schipper B, Beekwilder J, et al. A Single Arabidopsis Gene Encodes Two Differentially Targeted Geranylgeranyl Diphosphate Synthase Isoforms. Plant Physiol. 2016;172:1393–402. https://doi.org/10.1104/pp.16.01392.

 

Ruiz-Sola MA, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book. 2012;10:e0158. https://doi.org/10.1199/tab.0158.

 

Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex Ⅱ to control non-photochemical quenching. Nat Plants. 2017;3:16225. https://doi.org/10.1038/nplants.2016.225.

 

Sadali NM, Sowden RG, Ling Q, Jarvis RP. Differentiation of chromoplasts and other plastids in plants. Plant Cell Rep. 2019;38:803–18. https://doi.org/10.1007/s00299-019-02420-2.

 

Sagawa JM, Stanley LE, LaFountain AM, Frank HA, Liu C, Yuan YW. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytol. 2016;209:1049–57. https://doi.org/10.1111/nph.13647.

 

Sandmann G. Diversity and origin of carotenoid biosynthesis: its history of co-evolution towards plant photosynthesis. New Phytol. 2021. https://doi.org/10.1111/nph.17655.

 

Sauer L, Li B, Bernstein PS. Ocular Carotenoid Status in Health and Disease. Annu Rev Nutr. 2019;39:95–120. https://doi.org/10.1146/annurev-nutr-082018-124555.

 

Schaub P, Wuest F, Koschmieder J, Yu Q, Virk P, Tohme J, et al. Non-Enzymatic β-Carotene Degradation in (Provitamin A-Biofortified) Crop Plants. J Agric Food Chem. 2017. https://doi.org/10.1021/acs.jafc.7b01693.

 

Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science. 1997;276:1872–4. https://doi.org/10.1126/science.276.5320.1872.

 

Schweiggert R, Carle R. Carotenoid deposition in plant and animal foods and its impact on bioavailability. Crit Rev Food Sci Nutr. 2017;57:1807–30. https://doi.org/10.1080/10408398.2015.1012756.

 

Seto Y, Yasui R, Kameoka H, Tamiru M, Cao M, Terauchi R, et al. Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nat Commun. 2019;10:191. https://doi.org/10.1038/s41467-018-08124-7.

 

Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE, et al. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol. 2011;189:602–15. https://doi.org/10.1111/j.1469-8137.2010.03498.x.

 

Shumbe L, Bott R, Havaux M. Dihydroactinidiolide, a high light-induced beta-carotene derivative that can regulate gene expression and photoacclimation in Arabidopsis. Mol Plant. 2014;7:1248–51. https://doi.org/10.1093/mp/ssu028.

 

Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, Handford M, et al. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. J Exp Bot. 2018;69:4113–26. https://doi.org/10.1093/jxb/ery207.

 
Son M, Pinnola A, Bassi R, Schlau-Cohen GS. Ultrabroadband two-dimensional electronic spectroscopy reveals energy flow pathways in LHCII across the visible spectrum: EPJ Web of Conferences: EDP Sciences; 2019. p. 09034. https://doi.org/10.1051/epjconf/201920509034
 

Son M, Pinnola A, Gordon SC, Bassi R, Schlau-Cohen GS. Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex Ⅱ in membrane nanodiscs. Nat Commun. 2020;11:1–8. https://doi.org/10.1038/s41467-020-15074-6.

 

Stanley L, Yuan YW. Transcriptional Regulation of Carotenoid Biosynthesis in Plants: So Many Regulators, So Little Consensus. Front Plant Sci. 2019;10:1017. https://doi.org/10.3389/fpls.2019.01017.

 

Stanley LE, Ding B, Sun W, Mou F, Hill C, Chen S, et al. A Tetratricopeptide Repeat Protein Regulates Carotenoid Biosynthesis and Chromoplast Development in Monkeyflowers (Mimulus). Plant Cell. 2020;32:1536–55. https://doi.org/10.1105/tpc.19.00755.

 

Sun T, Li L. Toward the ‘golden’ era: The status in uncovering the regulatory control of carotenoid accumulation in plants. Plant Sci. 2020;290:110331. https://doi.org/10.1016/j.plantsci.2019.110331.

 
Sun T, Tadmor Y, Li L. Pathways for carotenoid biosynthesis, degradation, and storage. Plant and Food Carotenoids: Springer; 2020a. p. 3–23.
 

Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid Metabolism in Plants: The Role of Plastids. Mol Plant. 2018;11:58–74. https://doi.org/10.1016/j.molp.2017.09.010.

 

Sun T, Yuan H, Chen C, Kadirjan-Kalbach DK, Mazourek M, Osteryoung KW, et al. OR (His), a Natural Variant of OR, Specifically Interacts with Plastid Division Factor ARC3 to Regulate Chromoplast Number and Carotenoid Accumulation. Mol Plant. 2020b;13:864–78. https://doi.org/10.1016/j.molp.2020.03.007.

 

Sun T, Zhou F, Huang XQ, Chen WC, Kong MJ, Zhou CF, et al. ORANGE Represses Chloroplast Biogenesis in Etiolated Arabidopsis Cotyledons via Interaction with TCP14. Plant Cell. 2019;31:2996–3014. https://doi.org/10.1105/tpc.18.00290.

 

Sun T, Zhu Q, Wei Z, Owens LA, Fish T, Kim H, et al. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. aBIOTECH. 2021;2:191–214. https://doi.org/10.1007/s42994-021-00046-1.

 

Takaichi S. Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs. 2011;9:1101–18. https://doi.org/10.3390/md9061101.

 

Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35:44–56. https://doi.org/10.1046/j.1365-313x.2003.01786.x.

 

Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, et al. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnol J. 2016;14:29–39. https://doi.org/10.1111/pbi.12333.

 

Telfer A. Too much light? How β-carotene protects the photosystem Ⅱ reaction centre. Photochem Photobiol Sci. 2005;4:950–6. https://doi.org/10.1039/B507888C.

 

Toledo-Ortiz G, Huq E, Rodriguez-Concepcion M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proc Natl Acad Sci U S A. 2010;107:11626–31. https://doi.org/10.1073/pnas.0914428107.

 

Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, Steel G, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genet. 2014;10:e1004416. https://doi.org/10.1371/journal.pgen.1004416.

 

Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res. 2021;84:101128. https://doi.org/10.1016/j.plipres.2021.101128.

 

Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (C ucumis melo). Plant J. 2015;82:267–79. https://doi.org/10.1111/tpj.12814.

 

Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 angstrom. Nature. 2011;473:55–U65. https://doi.org/10.1038/nature09913.

 

Valenta K, Kalbitzer U, Razafimandimby D, Omeja P, Ayasse M, Chapman CA, et al. The evolution of fruit colour: phylogeny, abiotic factors and the role of mutualists. Sci Rep. 2018;8:1–8. https://doi.org/10.1038/s41598-018-32604-x.

 

Vogel JT, Tan BC, McCarty DR, Klee HJ. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem. 2008;283:11364–73. https://doi.org/10.1074/jbc.M710106200.

 

Wang B, Luo Q, Li Y, Yin L, Zhou N, Li X, et al. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res. 2020a;48:460–71. https://doi.org/10.1093/nar/gkz1081.

 

Wang JY, Haider I, Jamil M, Fiorilli V, Saito Y, Mi J, et al. The apocarotenoid metabolite zaxinone regulates growth and strigolactone biosynthesis in rice. Nat Commun. 2019;10:810. https://doi.org/10.1038/s41467-019-08461-1.

 
Wang JY, Lin P-Y, Al-Babili S. On the biosynthesis and evolution of apocarotenoid plant growth regulators. Semin Cell Dev Biol. 2021a:3–11. Elsevier. https://doi.org/10.1016/j.semcdb.2020.07.007.
 

Wang P, Wang Y, Wang W, Chen T, Tian S, Qin G. Ubiquitination of phytoene synthase 1 precursor modulates carotenoid biosynthesis in tomato. Commun Biol. 2020b;3:730. https://doi.org/10.1038/s42003-020-01474-3.

 

Wang W, Wang P, Li X, Wang Y, Tian S, Qin G. The transcription factor SlHY5 regulates the ripening of tomato fruit at both the transcriptional and translational levels. Hortic Res. 2021b;8:83. https://doi.org/10.1038/s41438-021-00523-0.

 

Waters MT, Gutjahr C, Bennett T, Nelson DC. Strigolactone Signaling and Evolution. Annu Rev Plant Biol. 2017;68:291–322. https://doi.org/10.1146/annurev-arplant-042916-040925.

 

Watkins JL, Pogson BJ. Prospects for Carotenoid Biofortification Targeting Retention and Catabolism. Trends Plant Sci. 2020;25:501–12. https://doi.org/10.1016/j.tplants.2019.12.021.

 

Wei S, Hannoufa A, Soroka J, Xu N, Li X, Zebarjadi A, et al. Enhanced beta-ionone emission in Arabidopsis over-expressing AtCCD1 reduces feeding damage in vivo by the crucifer flea beetle. Environ Entomol. 2011;40:1622–30. https://doi.org/10.1603/EN11088.

 

Welsch R, Beyer P, Hugueney P, Kleinig H, von Lintig J. Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis. Planta. 2000;211:846–54. https://doi.org/10.1007/s004250000352.

 

Welsch R, Zhou X, Yuan H, Alvarez D, Sun T, Schlossarek D, et al. Clp Protease and OR Directly Control the Proteostasis of Phytoene Synthase, the Crucial Enzyme for Carotenoid Biosynthesis in Arabidopsis. Mol Plant. 2018;11:149–62. https://doi.org/10.1016/j.molp.2017.11.003.

 

Wen X, Heller A, Wang K, Han Q, Ni Y, Carle R, et al. Carotenogenesis and chromoplast development during ripening of yellow, orange and red colored Physalis fruit. Planta. 2020;251:1–14. https://doi.org/10.1007/s00425-020-03383-5.

 

Wilk L, Grunwald M, Liao P-N, Walla PJ, Kühlbrandt W. Direct interaction of the major light-harvesting complex Ⅱ and PsbS in nonphotochemical quenching. Proc Natl Acad Sci U S A. 2013;110:5452–6. https://doi.org/10.1073/pnas.1205561110.

 

Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, Raguschke B, et al. Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis. Plant Physiol. 2014;165:1488–504. https://doi.org/10.1104/pp.114.245191.

 

Wurtzel ET. Changing Form and Function through Carotenoids and Synthetic Biology. Plant Physiol. 2019;179:830–43. https://doi.org/10.1104/pp.18.01122.

 

Wurtzel ET, Cuttriss A, Vallabhaneni R. Maize provitamin a carotenoids, current resources, and future metabolic engineering challenges. Front Plant Sci. 2012;3:29. https://doi.org/10.3389/fpls.2012.00029.

 

Xiao K, Chen J, He Q, Wang Y, Shen H, Sun L. DNA methylation is involved in the regulation of pepper fruit ripening and interacts with phytohormones. J Exp Bot. 2020;71:1928–42. https://doi.org/10.1093/jxb/eraa003.

 

Xu P, Chukhutsina VU, Nawrocki WJ, Schansker G, Bielczynski LW, Lu Y, et al. Photosynthesis without β-carotene. Elife. 2020;9:e58984. https://doi.org/10.7554/eLife.58984.

 

Yan J, Kandianis CB, Harjes CE, Bai L, Kim EH, Yang X, et al. Rare genetic variation at Zea mays crtRB1 increases beta-carotene in maize grain. Nat Genet. 2010;42:322–7. https://doi.org/10.1038/ng.551.

 

Yazdani M, Sun Z, Yuan H, Zeng S, Thannhauser TW, Vrebalov J, et al. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato. Plant Biotechnol J. 2019;17:33–49. https://doi.org/10.1111/pbi.12945.

 

Yuan H, Owsiany K, Sheeja TE, Zhou X, Rodriguez C, Li Y, et al. A Single Amino Acid Substitution in an ORANGE Protein Promotes Carotenoid Overaccumulation in Arabidopsis. Plant Physiol. 2015a;169:421–31. https://doi.org/10.1104/pp.15.00971.

 

Yuan H, Pawlowski EG, Yang Y, Sun T, Thannhauser TW, Mazourek M, et al. Arabidopsis ORANGE protein regulates plastid pre-protein import through interacting with Tic proteins. J Exp Bot. 2021;72:1059–72. https://doi.org/10.1093/jxb/eraa528.

 

Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. Hortic Res. 2015b;2:15036. https://doi.org/10.1038/hortres.2015.36.

 

Yuan YW, Byers KJ, Bradshaw HD Jr. The genetic control of flower-pollinator specificity. Curr Opin Plant Biol. 2013;16:422–8. https://doi.org/10.1016/j.pbi.2013.05.004.

 

Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, et al. Decreased Protein Abundance of Lycopene beta-Cyclase Contributes to Red Flesh in Domesticated Watermelon. Plant Physiol. 2020;183:1171–83. https://doi.org/10.1104/pp.19.01409.

 

Zhang J, Yuan H, Fei Z, Pogson BJ, Zhang L, Li L. Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica rapa L. ssp. pekinensis). Planta. 2015;241:1381–94. https://doi.org/10.1007/s00425-015-2262-z.

 

Zheng X, Giuliano G, Al-Babili S. Carotenoid biofortification in crop plants: citius, altius, fortius. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865:158664. https://doi.org/10.1016/j.bbalip.2020.158664.

 

Zheng X, Zhu K, Sun Q, Zhang W, Wang X, Cao H, et al. Natural Variation in CCD4 Promoter Underpins Species-Specific Evolution of Red Coloration in Citrus Peel. Mol Plant. 2019;12:1294–307. https://doi.org/10.1016/j.molp.2019.04.014.

 

Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol. 2013;31:154–9. https://doi.org/10.1038/nbt.2462.

 

Zhong Y, Pan X, Wang R, Xu J, Guo J, Yang T, et al. ZmCCD10a Encodes a Distinct Type of Carotenoid Cleavage Dioxygenase and Enhances Plant Tolerance to Low Phosphate. Plant Physiol. 2020;184:374–92. https://doi.org/10.1104/pp.20.00378.

 

Zhou D, Shen Y, Zhou P, Fatima M, Lin J, Yue J, et al. Papaya CpbHLH1/2 regulate carotenoid biosynthesis-related genes during papaya fruit ripening. Hortic Res. 2019;6:80. https://doi.org/10.1038/s41438-019-0162-2.

 

Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature. 2013;504:406–10. https://doi.org/10.1038/nature12878.

 

Zhou F, Wang CY, Gutensohn M, Jiang L, Zhang P, Zhang D, et al. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice. Proc Natl Acad Sci U S A. 2017;114:6866–71. https://doi.org/10.1073/pnas.1705689114.

 

Zhou H, Yang M, Zhao L, Zhu Z, Liu F, Sun H, et al. HIGH-TILLERING AND DWARF 12 modulates photosynthesis and plant architecture by affecting carotenoid biosynthesis in rice. J Exp Bot. 2021;72:1212–24. https://doi.org/10.1093/jxb/eraa497.

 

Zhou J, Zeng L, Liu J, Xing D. Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS Pathog. 2015a;11:e1004878. https://doi.org/10.1371/journal.ppat.1004878.

 

Zhou X, Sun TH, Wang N, Ling HQ, Lu S, Li L. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1. New Phytol. 2011;190:89–100. https://doi.org/10.1111/j.1469-8137.2010.03578.x.

 

Zhou X, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H, et al. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. Proc Natl Acad Sci U S A. 2015b;112:3558–63. https://doi.org/10.1073/pnas.1420831112.

 

Zhu K, Sun Q, Chen H, Mei X, Lu S, Ye J, et al. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. J Exp Bot. 2021a;72:3137–54. https://doi.org/10.1093/jxb/erab047.

 

Zhu K, Zheng X, Ye J, Huang Y, Chen H, Mei X, et al. Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in Citrus. Plant Physiol. 2021b;187:829–45. https://doi.org/10.1093/plphys/kiab291.

Molecular Horticulture
Pages 3-3
Cite this article:
Sun T, Rao S, Zhou X, et al. Plant carotenoids: recent advances and future perspectives. Molecular Horticulture, 2022, 2(1): 3. https://doi.org/10.1186/s43897-022-00023-2

226

Views

8

Downloads

177

Crossref

151

Web of Science

166

Scopus

Altmetrics

Received: 26 September 2021
Accepted: 03 January 2022
Published: 21 January 2022
© The Author(s). 2022

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return