AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Functional diversification and molecular mechanisms of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in horticultural plants

Shuang WangYiman YangFadi ChenJiafu Jiang ( )
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Show Author Information

Abstract

Flowering is an important process in higher plants and is regulated by a variety of factors, including light, temperature, and phytohormones. Flowering restriction has a considerable impact on the commodity value and production cost of many horticultural crops. In Arabidopsis, the FT/TFL1 gene family has been shown to integrate signals from various flowering pathways and to play a key role in the transition from flower production to seed development. Studies in several plant species of the FT/TFL1 gene family have revealed it harbors functional diversity in the regulation of flowering. Here, we review the functional evolution of the FT/TFL1 gene family in horticulture plants and its unique regulatory mechanisms; in addition, the FT/TFL1 family of genes as an important potential breeding target is explored.

References

 

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309(5737):1052–6. https://doi.org/10.1126/science.1115983.

 

Ahmad S, Lu C, Gao J, Ren R, Wei Y, Wu J, et al. Genetic insights into the regulatory pathways for continuous flowering in a unique orchid Arundina graminifolia. BMC Plant Biol. 2021;21(1):587. https://doi.org/10.1186/s12870-021-03350-6.

 

Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006;25(3):605–14. https://doi.org/10.1038/sj.emboj.7600950.

 

André D, Zambrano JA, Zhang B, Lee KC, Rühl M, Marcon A, et al. Populus SVL acts in leaves to modulate the timing of growth cessation and bud set. Front Plant Sci. 2022;13:823019. https://doi.org/10.3389/fpls.2022.823019.

 

Auberon F, Olatunji OJ, Krisa S, Antheaume C, Herbette G, Bonté F, et al. Two new Stilbenoids from the aerial parts of Arundina graminifolia (Orchidaceae). Molecules. 2016;21(11):1430. https://doi.org/10.3390/molecules21111430.

 

Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, et al. Cauliflower fractal forms arise from perturbations of floral gene networks. Science. 2021;373(6551):192–7. https://doi.org/10.1126/science.abg5999.

 

Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH. The role of recently derived FT paralogs in sunflower domestication. Curr Biol. 2010;20(7):629–35. https://doi.org/10.1016/j.cub.2010.01.059.

 

Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–3. https://doi.org/10.1126/science.275.5296.80.

 

Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S. Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci. 2016;6:1213. https://doi.org/10.3389/fpls.2015.01213.

 

Castillejo C, Pelaz S. The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol. 2008;18(17):1338–43. https://doi.org/10.1016/j.cub.2008.07.075.

 

Chailakhyan MK, Krikorian A. Forty years of research on the hormonal basis of plant development—some personal reflections. Bot Rev. 1975;41(1):1–29. https://doi.org/10.1007/BF02860835.

 

Chen Y, Zhang L, Zhang H, Chen L, Yu D. ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis. J Integr Plant Biol. 2021;63(10):1712–23. https://doi.org/10.1111/jipb.13144.

 

Cho LH, Yoon J, An G. The control of flowering time by environmental factors. Plant J. 2017;90(4):708–19. https://doi.org/10.1111/tpj.13461.

 

Conti L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell. 2007;19(3):767–78. https://doi.org/10.1105/tpc.106.049767.

 

D'Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 2011;65(6):972–9. https://doi.org/10.1111/j.1365-313X.2011.04482.x.

 

Gao C. Genome engineering for crop improvement and future agriculture. Cell. 2021;184(6):1621–35. https://doi.org/10.1016/j.cell.2021.01.005.

 

Gao Y, Gao Y, Wu Z, Bu X, Fan M, Zhang Q. Characterization of TEMINAL FLOWER1 homologs CmTFL1c gene from Chrysanthemum morifolium. Plant Mol Biol. 2019;99(6):587–601. https://doi.org/10.1007/s11103-019-00838-6.

 

Gómez-Soto D, Allona I, Perales M. FLOWERING LOCUS T2 promotes shoot apex development and restricts internode elongation via the 13-hydroxylation gibberellin biosynthesis pathway in poplar. Front Plant Sci. 2022;12:814195. https://doi.org/10.3389/fpls.2021.814195.

 

Goralogia GS, Liu TK, Zhao L, Panipinto PM, Groover ED, Bains YS, et al. CYCLING DOF FACTOR 1 represses transcription through the TOPLESS co-repressor to control photoperiodic flowering in Arabidopsis. Plant J. 2017;92(2):244–62. https://doi.org/10.1111/tpj.13649.

 

Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, Madueño F, et al. TERMINAL FLOWER1 functions as a Mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol. 2020;182(4):2081–95. https://doi.org/10.1104/pp.19.00867.

 

Gras DE, Vidal EA, Undurraga SF, Riveras E, Moreno S, Dominguez-Figueroa J, et al. SMZ/SNZ and gibberellin signaling are required for nitrate-elicited delay of flowering time in Arabidopsis thaliana. J Exp Bot. 2018;69(3):619–31. https://doi.org/10.1093/jxb/erx423.

 

Haider S, Gao Y, Gao Y. Standardized genetic transformation protocol for Chrysanthemum cv. ‘Jinba’ with TERMINAL FLOWER 1 homolog CmTFL1a. Genes (Basel). 2020;11(8):860. https://doi.org/10.3390/genes11080860.

 

Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A. 2005;102(21):7748–53. https://doi.org/10.1073/pnas.0500932102.

 

Higuchi Y. Florigen and anti-florigen: flowering regulation in horticultural crops. Breed Sci. 2018;68(1):109–18. https://doi.org/10.1270/jsbbs.17084.

 

Higuchi Y, Hisamatsu T. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Sci. 2015;237:1–7. https://doi.org/10.1016/j.plantsci.2015.04.011.

 

Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, et al. The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci U S A. 2013;110(42):17137–42. https://doi.org/10.1073/pnas.1307617110.

 

Ho WW, Weigel D. Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell. 2014;26(2):552–64. https://doi.org/10.1105/tpc.113.115220.

 

Hou CJ, Yang CH. Functional analysis of FT and TFL1 orthologs from orchid (Oncidium Gower Ramsey) that regulate the vegetative to reproductive transition. Plant Cell Physiol. 2009;50(8):1544–57. https://doi.org/10.1093/pcp/pcp099.

 

Hsu CY, Adams JP, Kim H, No K, Ma C, Strauss SH, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A. 2011;108(26):10756–61. https://doi.org/10.1073/pnas.1104713108.

 

Hsu CY, Adams JP, No K, Liang H, Meilan R, Pechanova O, et al. Overexpression of CONSTANS homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One. 2012;7(9):e45448. https://doi.org/10.1371/journal.pone.0045448.

 

Hsu CY, Liu Y, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006;18(8):1846–61. https://doi.org/10.1105/tpc.106.041038.

 

Huang NC, Jane WN, Chen J, Yu TS. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 2012;72(2):175–84. https://doi.org/10.1111/j.1365-313X.2012.05076.x.

 

Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 2006;11(11):550–8. https://doi.org/10.1016/j.tplants.2006.09.004.

 
Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science. 2005;309(5732):293–7. https://www.science.org/doi/10.1126/science.1110586.
 

Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, Kawamura K, et al. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. Plant J. 2012;69(1):116–25. https://doi.org/10.1111/j.1365-313X.2011.04776.x.

 

Jagadish SV, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PV, Craufurd PQ. Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci. 2016;7:913. https://doi.org/10.3389/fpls.2016.00913.

 

Jiang D, Wang Y, Wang Y, He Y. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components. PLoS One. 2008;3(10):e3404. https://doi.org/10.1371/journal.pone.0003404.

 

Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet. 2013;9(12):e1004043. https://doi.org/10.1371/journal.pgen.1004043.

 

Jiang L, Jiang X, Li Y, Gao Y, Wang S, Ma Y, et al. FT-like paralogs are repressed by an SVP protein during the floral transition in Phalaenopsis orchid. Plant Cell Rep. 2022;41(1):233–48. https://doi.org/10.1007/s00299-021-02805-2.

 

Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, et al. Activation tagging of the floral inducer FT. Science. 1999;286(5446):1962–5. https://doi.org/10.1126/science.286.5446.1962.

 

Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B. CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci. 2017;8:1635. https://doi.org/10.3389/fpls.2017.01635.

 

Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 2011;156(4):1967–77. https://doi.org/10.1104/pp.111.176206.

 

Kim W, Park TI, Yoo SJ, Jun AR, Ahn JH. Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation. J Exp Bot. 2013;64(6):1715–29. https://doi.org/10.1093/jxb/ert036.

 

Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. 2012;196(4):1260–73. https://doi.org/10.1111/j.1469-8137.2012.04332.x.

 

Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, Sargent DJ, et al. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiol. 2012;159(3):1043–54. https://doi.org/10.1104/pp.112.196659.

 

Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature. 2012;484(7393):242–5. https://doi.org/10.1038/nature10928.

 

Lazare S, Zaccai M. Flowering pathway is regulated by bulb size in Lilium longiflorum (Easter lily). Plant Biol (Stuttg). 2016;18(4):577–84. https://doi.org/10.1111/plb.12440.

 

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 2007;21(4):397–402. https://doi.org/10.1101/gad.1518407.

 
Lee R, Baldwin S, Kenel F, McCallum J, Macknight R. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun. 2013;4:2884 https://www.nature.com/articles/ncomms3884.
 

Leeggangers HACF, Rosilio-Brami T, Bigas-Nadal J, Rubin N, van Dijk ADJ, de Caceres N, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control. Plant Cell Physiol. 2018;59(1):90–106. https://doi.org/10.1093/pcp/pcx164.

 

Li DM, L FB, Zhu GF, Sun YB, Liu HL, Liu JW, et al. Molecular characterization and functional analysis of a flowering locus T homolog gene from a Phalaenopsis orchid. Genet Mol Res. 2014;13(3):5982–94. https://doi.org/10.4238/2014.

 

Li XF, Jia LY, Xu J, Deng XJ, Wang Y, Zhang W, et al. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis. Plant Cell Physiol. 2013;54(2):270–81. https://doi.org/10.1093/pcp/pcs181.

 

Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen - a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci. 2014;5:465. https://doi.org/10.3389/fpls.2014.00465.

 

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, et al. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A. 2006;103(16):6398–403. https://doi.org/10.1073/pnas.0601620103.

 

Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, et al. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell. 2007;19(5):1488–506. https://doi.org/10.1105/tpc.107.051920.

 

Liu CH, Fan C. De novo transcriptome assembly of floral buds of pineapple and identification of differentially expressed genes in response to Ethephon induction. Front Plant Sci. 2016;7:203. https://doi.org/10.3389/fpls.2016.00203.

 

Liu CH, Liu Y, Shao XH, Lai D. Comparative analyses of the transcriptome and proteome of Comte de Paris and smooth Cayenne to improve the understanding of Ethephon-induced floral transition in pineapple. Cell Physiol Biochem. 2018;50(6):2139–56. https://doi.org/10.1159/000495057.

 

Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, et al. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science. 2008;322(5907):1535–9. https://doi.org/10.1126/science.1163927.

 

Liu L, Li C, Teo ZWN, Zhang B, Yu H. The MCTP-SNARE complex regulates Florigen transport in Arabidopsis. Plant Cell. 2019;31(10):2475–90. https://doi.org/10.1105/tpc.18.00960.

 

Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, et al. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 2012;10(4):e1001313. https://doi.org/10.1371/journal.pbio.1001313.

 

Liu L, Zhang Y, Yu H. Florigen trafficking integrates photoperiod and temperature signals in Arabidopsis. J Integr Plant Biol. 2020;62(9):1385–98. https://doi.org/10.1111/jipb.13000.

 

Luo X, Yin M, He Y. Molecular genetic understanding of photoperiodic regulation of flowering time in Arabidopsis and soybean. Int J Mol Sci. 2021;23(1):466. https://doi.org/10.3390/ijms23010466.

 

Mao Y, Sun J, Cao P, Zhang R, Fu Q, Chen S, et al. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium. Hortic Res. 2016;3:16058. https://doi.org/10.1038/hortres.2016.58.

 

Mathieu J, Warthmann N, Küttner F, Schmid M. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol. 2007;17(12):1055–60. https://doi.org/10.1016/j.cub.2007.05.009.

 

Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. Repression of flowering by the miR172 target SMZ. PLoS Biol. 2009;7(7):e1000148. https://doi.org/10.1371/journal.pbio.1000148.

 

Matsoukas IG, Massiah AJ, Thomas B. Florigenic and antiflorigenic signaling in plants. Plant Cell Physiol. 2012;53(11):1827–42. https://doi.org/10.1093/pcp/pcs130.

 

Merini W, Calonje M. PRC1 is taking the lead in PcG repression. Plant J. 2015;83(1):110–20. https://doi.org/10.1111/tpj.12818.

 

Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 2005;137(1):149–56. https://doi.org/10.1104/pp.104.052811.

 

Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, et al. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 2010;62(4):674–88. https://doi.org/10.1111/j.1365-313X.2010.04185.x.

 

Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta. 2004;218(3):427–34. https://doi.org/10.1007/s00425-003-1109-1.

 

Moraes TS, Dornelas MC, Martinelli AP. FT/TFL1: Calibrating Plant Architecture. Front Plant Sci. 2019;10:97. https://doi.org/10.3389/fpls.2019.00097.

 

Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, Hytönen T. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. Plant Cell. 2013;25(9):3296–310. https://doi.org/10.1105/tpc.113.115055.

 

Mozgova I, Hennig L. The polycomb group protein regulatory network. Annu Rev Plant Biol. 2015;66:269–96. https://doi.org/10.1146/annurev-arplant-043014-115627.

 

Müller-Xing R, Clarenz O, Pokorny L, Goodrich J, Schubert D. Polycomb-group proteins and FLOWERING LOCUS T maintain commitment to flowering in Arabidopsis thaliana. Plant Cell. 2014;26(6):2457–71. https://doi.org/10.1105/tpc.114.123323.

 

Nakano Y, Higuchi Y, Yoshida Y, Hisamatsu T. Environmental responses of the FT/TFL1 gene family and their involvement in flower induction in Fragaria × ananassa. J Plant Physiol. 2015;177:60–6. https://doi.org/10.1016/j.jplph.2015.01.007.

 

Nakano Y, Takase T, Takahashi S, Sumitomo K, Higuchi Y, Hisamatsu T. Chrysanthemum requires short-day repeats for anthesis: gradual CsFTL3 induction through a feedback loop under short-day conditions. Plant Sci. 2019;283:247–55. https://doi.org/10.1016/j.plantsci.2019.01.023.

 
Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 2011;478(7367):119–22 https://www.nature.com/articles/nature10431.
 

Njogu MK, Yang F, Li J, Wang X, Ogweno JO, Chen J. A novel mutation in TFL1 homolog sustaining determinate growth in cucumber (Cucumis sativus L.). Theor Appl Genet. 2020;133(12):3323–32. https://doi.org/10.1007/s00122-020-03671-4.

 

Noy-Porat T, Cohen D, Mathew D, Eshel A, Kamenetsky R, Flaishman MA. Turned on by heat: differential expression of FT and LFY-like genes in Narcissus tazetta during floral transition. J Exp Bot. 2013;64(11):3273–84. https://doi.org/10.1093/jxb/ert165.

 

Oda A, Higuchi Y, Hisamatsu T. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX. Plant Sci. 2017;259:86–93. https://doi.org/10.1016/j.plantsci.2017.03.007.

 

Oda A, Higuchi Y, Hisamatsu T. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum. Plant Sci. 2020;293:110417. https://doi.org/10.1016/j.plantsci.2020.110417.

 

Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, et al. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J Exp Bot. 2012;63(3):1461–77. https://doi.org/10.1093/jxb/err387.

 

Otagaki S, Ogawa Y, Hibrand-Saint Oyant L, Foucher F, Kawamura K, Horibe T, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses. Plant Biol (Stuttg). 2015;17(4):808–15. https://doi.org/10.1111/plb.12299.

 

Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, et al. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3. Biotech. 2017;7(4):239. https://doi.org/10.1007/s13205-017-0870-y.

 

Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, et al. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–400. https://doi.org/10.1126/science.1197004.

 

Porri A, Torti S, Romera-Branchat M, Coupland G. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development. 2012;139(12):2198–209. https://doi.org/10.1242/dev.077164.

 

Putterill J, Varkonyi-Gasic E. FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol. 2016;33:77–82. https://doi.org/10.1016/j.pbi.2016.06.008.

 
Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, Jaeger KE, et al. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth. Curr Biol. 2019;29(14):2402–2406.e4. https://doi.org/10.1016/j.cub.2019.06.003.
 

Randoux M, Davière JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, et al. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. New Phytol. 2014;202(1):161–73. https://doi.org/10.1111/nph.12625.

 

Rantanen M, Kurokura T, Jiang P, Mouhu K, Hytönen T. Strawberry homologue of terminal flower1 integrates photoperiod and temperature signals to inhibit flowering. Plant J. 2015;82(1):163–73. https://doi.org/10.1111/tpj.12809.

 

Rantanen M, Kurokura T, Mouhu K, Pinho P, Tetri E, Halonen L, et al. Light quality regulates flowering in FvFT1/FvTFL1 dependent manner in the woodland strawberry Fragaria vesca. Front Plant Sci. 2014;5:271. https://doi.org/10.3389/fpls.2014.00271.

 

Sawa M, Kay SA. GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2011;108(28):11698–703. https://doi.org/10.1073/pnas.1106771108.

 

Schatlowski N, Creasey K, Goodrich J, Schubert D. Keeping plants in shape: polycomb-group genes and histone methylation. Semin Cell Dev Biol. 2008;19(6):547–53. https://doi.org/10.1016/j.semcdb.2008.07.019.

 

Serrano-Mislata A, Goslin K, Zheng B, Rae L, Wellmer F, Graciet E, et al. Regulatory interplay between LEAFY, APETALA1/CAULIFLOWER and TERMINAL FLOWER1: new insights into an old relationship. Plant Signal Behav. 2017;12(10):e1370164. https://doi.org/10.1080/15592324.2017.1370164.

 

Shalit A, Rozman A, Goldshmidt A, Alvarez JP, Bowman JL, Eshed Y, et al. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci U S A. 2009;106(20):8392–7. https://doi.org/10.1073/pnas.0810810106.

 

Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell. 1991;3(9):877–92. https://doi.org/10.1105/tpc.3.9.877.

 

Song C, Li G, Dai J, Deng H. Genome-wide analysis of PEBP genes in Dendrobium huoshanense: unveiling the antagonistic functions of FT/TFL1 in flowering time. Front Genet. 2021;12:687689. https://doi.org/10.3389/fgene.2021.687689.

 
Song J. Map-based cloning and functional analysis of the flowering gene FTL1 in tomato. Master thesis, Chinese Academy of Agricultural Sciences Thesis; 2020. https://doi.org/10.27630/d.cnki.gznky.2020.000741.
 

Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu Rev Plant Biol. 2015;66:441–64. https://doi.org/10.1146/annurev-arplant-043014-115555.

 

Soyk S, Müller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, et al. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet. 2017;49(1):162–8. https://doi.org/10.1038/ng.3733.

 

Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci. 2011;68(12):2013–37. https://doi.org/10.1007/s00018-011-0673-y.

 

Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic Res. 2019;6:109. https://doi.org/10.1038/s41438-019-0193-8.

 

Sun J, Cao P, Wang L, Chen S, Chen F, Jiang J. The loss of a single residue from CmFTL3 leads to the failure of florigen to flower. Plant Sci. 2018;276:99–104. https://doi.org/10.1016/j.plantsci.2018.08.005.

 

Sun J, Wang H, Ren L, Chen S, Chen F, Jiang J. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum. Hortic Res. 2017;4:17001. https://doi.org/10.1038/hortres.2017.1.

 

Susila H, JurićS LL, Gawarecka K, Chung KS, Jin S, et al. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science. 2021;373(6559):1137–42. https://doi.org/10.1126/science.abh4054.

 

Tang M, Bai X, Wang J, Chen T, Meng X, Deng H, et al. Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. Tree Physiol. 2022;42(1):189–201. https://doi.org/10.1093/treephys/tpab116.

 

Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. Trends Plant Sci. 2013;18(5):287–94. https://doi.org/10.1016/j.tplants.2013.02.002.

 

Tsuji H. Molecular function of florigen. Breed Sci. 2017;67(4):327–32. https://doi.org/10.1270/jsbbs.17026.

 
Tsuji H, Taoka K. Florigen signaling Enzymes. 2014;35:113–44. https://doi.org/10.1016/B978-0-12-801922-1.00005-1.
 

Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 2007;3(6):e86. https://doi.org/10.1371/journal.pgen.0030086.

 

Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, Hellens RP. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytol. 2013;198(3):732–46. https://doi.org/10.1111/nph.12162.

 

Wang F, Gao Y, Liu Y, Zhang X, Gu X, Ma D, et al. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. New Phytol. 2019;223(3):1407–19. https://doi.org/10.1111/nph.15866.

 

Wang L, Sun J, Ren L, Zhou M, Han X, Ding L, et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. Plant Biotechnol J. 2020a;18(7):1562–72. https://doi.org/10.1111/pbi.13322.

 

Wang S, Li H, Li Y, Li Z, Qi J, Lin T, et al. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiol. 2020b;182(2):908–18. https://doi.org/10.1104/pp.19.01215.

 

Wang Y, Liu L, Song S, Li Y, Shen L, Yu H. DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya smile. J Exp Bot. 2017;68(21–22):5759–72. https://doi.org/10.1093/jxb/erx400.

 

Wei Q, Ma C, Xu Y, Wang T, Chen Y, Lu J, et al. Control of chrysanthemum flowering through integration with an aging pathway. Nat Commun. 2017;8(1):829.https://doi.org/10.1038/s41467-017-00812-0.

 

Wellmer F, Riechmann JL. Gene networks controlling the initiation of flower development. Trends Genet. 2010;26(12):519–27. https://doi.org/10.1016/j.tig.2010.09.001.

 

Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, et al. CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development. 2019;146(14):dev180166. https://doi.org/10.1242/dev.180166.

 

Wu YM, Ma YJ, Wang M, Zhou H, Gan ZM, Zeng RF, et al. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. Hortic Res. 2022;9:uhac056. https://doi.org/10.1093/hr/uhac056.

 

Xi W, Liu C, Hou X, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22(6):1733–48. https://doi.org/10.1105/tpc.109.073072.

 

Xu F, Rong X, Huang X, Cheng S. Recent advances of flowering locus T gene in higher plants. Int J Mol Sci. 2012;13(3):3773–81. https://doi.org/10.3390/ijms13033773.

 

Xu J, Hua K, Lang Z. Genome editing for horticultural crop improvement. Hortic Res. 2019;6:113. https://doi.org/10.1038/s41438-019-0196-5.

 

Yamaguchi A, Kobayashi Y, Goto K, Abe M, Araki T. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 2005;46(8):1175–89. https://doi.org/10.1093/pcp/pci151.

 

Yang LW, Wen XH, Fu JX, Dai SL. ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods. Hortic Res. 2018;5:58. https://doi.org/10.1038/s41438-018-0063-9.

 

Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. Plant Cell. 2014;26(5):2038–54. https://doi.org/10.1105/tpc.114.124867.

 

Yoo SJ, Chung KS, Jung SH, Yoo SY, Lee JS, Ahn JH. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 2010;63(2):241–53. https://doi.org/10.1111/j.1365-313X.2010.04234.x.

 
Yoo SY, Kardailsky I, Lee JS, Weigel D, Ahn JH. Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol Cells. 2004;17(1):95–101 http://europepmc.org/article/MED/15055534.
 
Zhang S, Zhang Y, Li K, Yan M, Zhang J, Yu M, et al. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in Rice. Curr Biol. 2021;31(4):671–683.e5. https://doi.org/10.1016/j.cub.2020.10.095.
 

Zhao W, Gu R, Che G, Cheng Z, Zhang X. CsTFL1b may regulate the flowering time and inflorescence architecture in cucumber (Cucumis sativus L.). Biochem Biophys Res Commun. 2018;499(2):307–13. https://doi.org/10.1016/j.bbrc.2018.03.153.

 

Zhou S, Jiang L, Guan S, Gao Y, Gao Q, Wang G, et al. Expression profiles of five FT-like genes and functional analysis of PhFT-1 in a Phalaenopsis hybrid. Electron J Biotechnol. 2018;31:75–83. https://doi.org/10.1016/j.ejbt.2017.11.003.

 

Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, et al. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun. 2020;11(1):5118. https://doi.org/10.1038/s41467-020-18782-1.

Molecular Horticulture
Pages 19-19
Cite this article:
Wang S, Yang Y, Chen F, et al. Functional diversification and molecular mechanisms of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in horticultural plants. Molecular Horticulture, 2022, 2(3): 19. https://doi.org/10.1186/s43897-022-00039-8

132

Views

2

Downloads

9

Crossref

10

Web of Science

9

Scopus

Altmetrics

Received: 04 May 2022
Accepted: 29 July 2022
Published: 16 August 2022
© The Author(s) 2022.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return