AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

How a single receptor-like kinase exerts diverse roles: lessons from FERONIA

Gaopeng Wang1,2Zhifang Zhao1,2Xinhang Zheng1,2Wenfeng Shan1,2Jiangbo Fan1,2 ( )
Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
Show Author Information

Abstract

FERONIA (FER) is a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein subfamily, which participates in reproduction, abiotic stress, biotic stress, cell growth, hormone response, and other molecular mechanisms of plants. However, the mechanism by which a single RLK is capable of mediating multiple signals and activating multiple cellular responses remains unclear. Here, we summarize research progress revealing the spatial–temporal expression of FER, along with its co-receptors and ligands determined the function of FER signaling pathway in multiple organs. The specificity of the FER signaling pathway is proposed to operate under a four-layered mechanism: (1) Spatial–temporal expression of FER, co-receptors, and ligands specify diverse functions, (2) Specific ligands or ligand combinations trigger variable FER signaling pathways, (3) Diverse co-receptors confer diverse FER perception and response modes, and (4) Unique downstream components that modify FER signaling and responses. Moreover, the regulation mechanism of the signaling pathway- appears to depend on the interaction among the ligands, RLK receptors, co-receptors, and downstream components, which may be a general mechanism of RLKs to maintain signal specificity. This review will provide a insight into understanding the specificity determination of RLKs signaling in both model and horticultural crops.

Electronic Supplementary Material

Download File(s)
mh-2-4-25_ESM.docx (68 KB)

References

 

Bergonci T, Silva-Filho MC, Moura DS. Antagonistic relationship between AtRALF1 and brassinosteroid regulates cell expansion-related genes. Plant Signal Behav. 2014b;9:e976146.

 

Bergonci T, Ribeiro B, Ceciliato PHO, Guerrero-Abad JC, Silva-Filho MC, Moura DS. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot. 2014a;65:2219–30.

 

Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proc Natl Acad Sci U S A. 2015;112:12211–6.

 

Campbell L, Turner SR. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci. 2017;8:37.

 

Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A. 2016;113:E5519–27.

 

Cohen P. The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem Sci. 2000;25:596–601.

 

Couto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016;16:537–52.

 

DeFalco TA. Studying the many faces of FERONIA. Plant Cell. 2022;34:2572–3.

 

Deslauriers SD, Larsen PB. FERONIA is a key modulator of brassinosteroid and ethylene responsiveness in arabidopsis hypocotyls. Mol Plant. 2010;3:626–40.

 

Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. Origin and Diversity of Plant Receptor-Like Kinases. Annu Rev Plant Biol. 2020;71:131–56.

 

Dong QK, Zhang ZW, Liu YT, Tao LZ, Liu HL. FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett. 2019;593:97–106.

 

Du C, Li X, Chen J, Chen W, Li B, Li C, et al. Receptor kinase complex transmits RALF peptide signal to inhibit root growth in Arabidopsis. Proc Natl Acad Sci U S A. 2016;113:E8326–34.

 

Duan Q, Kita D, Johnson EA, Aggarwal M, Gates L, Wu H-M, et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis. Nat Commun. 2014;5:3129.

 

Duan Q, Kita D, Li C, Cheung AY, Wu H-M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A. 2010;107:17821–6.

 

Duan Q, Liu M-CJ, Kita D, Jordan SS, Yeh F-LJ, Yvon R, et al. FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature. 2020;579:561–6.

 

Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J. Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. The EMBO J. 2019;38:e100353. https://doi.org/10.15252/embj.2018100353.

 

Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, et al. The Feronia receptor-like kinase mediates male-female interactions during pollen tube reception. Science. 2007;317:656–60.

 

Feng H, Liu C, Fu R, Zhang M, Li H, Shen L, et al. LORELEI-LIKE GPI-ANCHORED proteins 2/3 Regulate Pollen Tube Growth as Chaperones and Coreceptors for ANXUR/BUPS Receptor Kinases in Arabidopsis. Mol Plant. 2019;12:1612–23.

 

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, et al. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling. Curr Biol. 2018;28:666–75.

 

Galindo-Trigo S, Blanco-Touriñán N, DeFalco TA, Wells ES, Gray JE, Zipfel C, et al. CrRLK1L receptor-like kinases HERK1 and ANJEA are female determinants of pollen tube reception. EMBO Rep. 2020;21:e48466.

 

Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. A receptor-channel trio conducts Ca2+ signalling for pollen tube reception. Nature (London). 2022. https://doi.org/10.1038/s41586-022-04923-7.

 

Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu MC, et al. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling. Science. 2017;358:1596–600.

 

Gjetting SK, Mahmood K, Shabala L, Kristensen A, Shabala S, Palmgren M, et al. Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. Plant J. 2020;104:433–46.

 

Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2009;106(18):7648–53.

 

Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, et al. FERONIA Receptor Kinase Contributes to Plant Immunity by Suppressing Jasmonic Acid Signaling in Arabidopsis thaliana. Curr Biol. 2018;28:3316–24.

 

Haruta M, Gaddameedi V, Burch H, Fernandez D, Sussman MR. Comparison of the effects of a kinase-dead mutation of FERONIA on ovule fertilization and root growth of Arabidopsis. FEBS Lett. 2018;592:2395–402.

 

Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR. A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion. SCIENCE. 2014;343:408–11.

 

He Y, Zhou J, Shan L, Meng X. Plant cell surface receptor-mediated signaling - a common theme amid diversity. J Cell Sci. 2018;131:jcs209353.

 

Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-Rich Repeat Extensin Proteins and Their Role in Cell Wall Sensing. Curr Biol. 2019;29:R851–8.

 

Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, Ringli C. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genet. 2020;16:e1008847.

 

Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. Annu Rev Plant Biol. 2019;70:809–37.

 

Kim D, Yang J, Gu F, Park S, Combs J, Adams A, et al. A temperature-sensitive FERONIA mutant allele that alters root hair growth. Plant Physiol. 2021;185:405–23.

 

Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H. Evolutionary History and Stress Regulation of Plant Receptor-Like Kinase/Pelle Genes. Plant Physiol. 2009;150:12–26.

 

Li C, Chen J, Li X, Zhang X, Liu Y, Zhu S, et al. FERONIA is involved in phototropin 1-mediated blue light phototropic growth in Arabidopsis. J Integr Plant Biol. 2022a;64:1901–15.

 

Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, et al. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife. 2015;4:1–21.

 

Li E, Wang G, Zhang YL, Kong Z, Li S. FERONIA mediates root nutating growth. Plant J. 2020;104:1105–16.

 

Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. CELL. 2002;110:213–22.

 

Li L, Chen H, Alotaibi SS, Pěnčík A, Adamowski M, Novák O, et al. RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis. Proc Natl Acad Sci. 2022b;119:1-e2121058119.

 

Liang X, Zhou J-M. Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase-Mediated Signaling. Annu Rev Plant Biol. 2018;69:267–99.

 

Liu C, Shen L, Xiao Y, Vyshedsky D, Peng C, Sun X, et al. Pollen PCP-B peptides unlock a stigma peptide-receptor kinase gating mechanism for pollination. Science. 2021;372:171–5.

 

Liu X, Castro C, Wang Y, Noble J, Ponvert N, Bundy M, et al. The Role of LORELEI in Pollen Tube Reception at the Interface of the Synergid Cell and Pollen Tube Requires the Modified Eight-Cysteine Motif and the Receptor-Like Kinase FERONIA. Plant Cell. 2016;28:1035–52.

 

Mao D, Yu F, Li J, Van de Poel B, Tan D, Li J, et al. FERONIA receptor kinase interacts with S-adenosylmethionine synthetase and suppresses S-adenosylmethionine production and ethylene biosynthesis in Arabidopsis. Plant Cell Environ. 2015;38:2566–74.

 

Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, El Ghalid M, et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol. 2016;1:16043.

 

Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, et al. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science. 2017;358:1600–3.

 

Misra P, Owuor ED, Li WG, Yu ST, Qi C, Meyer K, et al. Phosphorylation of transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) - Stimulation of transcriptional regulation by mitogen-activated protein kinase. J Biol Chem. 2002;277:48745–54.

 

Morato do Canto A, Ceciliato PHO, Ribeiro B, Ortiz Morea FA, Franco Garcia AA, Silva-Filho MC, et al. Biological activity of nine recombinant AtRALF peptides: Implications for their perception and function in Arabidopsis. Plant Physiol Biochem. 2014;75:45–54.

 

Moussu S, Broyart C, Santos-Fernandez G, Augustin S, Wehrle S, Grossniklaus U, et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc Natl Acad Sci U S A. 2020;117:7494–503.

 

Park CH, Bi Y, Youn J-H, Kim S-H, Kim J-G, Xu NY, et al. Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases. Nat Plants. 2022;8:646–55.

 

Richter J, Ploderer M, Hauser MT, Mongelard G, Gutierrez L. Role of CrRLK1L cell wall sensors HERCULES1 and 2, THESEUS1, and FERONIA in growth adaptation triggered by heavy metals and trace elements. Front Plant Sci. 2017;8:1554.

 

Robatzek S, Nürnberger T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature. 2007;448:497–500.

 

Sénéchal F, L’Enfant M, Domon J-M, Rosiau E, Crépeau M-J, Surcouf O, et al. Tuning of Pectin Methylesterification: Pectin methylesterase inhibitor 7 modulates the processive activity of co-expressed pectin methylesterase 3 in a ph-dependent manner. J Biol Chem. 2015;290:23320–35.

 

Shih H-W, Miller Nathan D, Dai C, Spalding Edgar P, Monshausen GB. The Receptor-like Kinase FERONIA Is Required for Mechanical Signal Transduction in Arabidopsis Seedlings. Curr Biol. 2014;24:1887–92.

 

Shiu S-H, Bleecker AB. Receptor-like Kinases from Arabidopsis Form a Monophyletic Gene Family Related to Animal Receptor Kinases. P Natl Acad Sci USA. 2001;98:10763–8.

 

Shiu S-H, Bleecker AB. Expansion of the receptor-like Kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 2003;132:530–43.

 

Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KFX, Li W-H. Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice[W]. Plant Cell. 2004;16:1220–34.

 

Song L, Xu G, Li T, Zhou H, Lin Q, Chen J, et al. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients. Mol Plant. 2022;15:1120–36.

 

Srivastava R, Liu JX, Guo H, Yin Y, Howell SH. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J. 2009;59:930–9.

 

Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N, et al. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science. 2017;355:287–9.

 

Tang J, Wu D, Li X, Wang L, Xu L, Zhang Y, et al. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation. EMBO J. 2022a;41:e109102.

 

Tang W, Lin W, Zhou X, Guo J, Dang X, Li B, et al. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr Biol. 2022b;32:508–17.

 

Wang L, Clarke LA, Eason RJ, Parker CC, Qi B, Scott RJ, et al. PCP-B class pollen coat proteins are key regulators of the hydration checkpoint in Arabidopsis thaliana pollen–stigma interactions. New Phytol. 2017;213:764–77.

 

Wang P, Clark NM, Nolan TM, Song G, Bartz PM, Liao C-Y, et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant Cell. 2022a;34:2594–614.

 

Wang P, Clark NM, Nolan TM, Song G, Whitham OG, Liao C-Y, et al. FERONIA functions through Target of Rapamycin (TOR) to negatively regulate autophagy. Front Plant Sci. 2022b;13:961096.

 

Xiao Y, Stegmann M, Han Z, DeFalco TA, Parys K, Xu L, et al. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature. 2019;572:270–4.

 

Xin X-F, Sheng Yang HE. Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants. Annu Rev Phytopathol. 2013;51:473–98.

 

Yang DH, Hettenhausen C, Baldwin IT, Wu J. The multifaceted function of BAK1/SERK3: Plant immunity to pathogens and responses to insect herbivores. Plant Signal Behav. 2011;6:1322–4.

 

Yasuda S, Okada K, Saijo Y. A look at plant immunity through the window of the multitasking coreceptor BAK1. Curr Opin Plant Biol. 2017;38:10–8.

 

Yu F, Li J, Huang Y, Liu L, Li D, Chen L, et al. FERONIA receptor kinase controls seed size in arabidopsis Thaliana. MPPHYS. 2014;7:920–2.

 

Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, et al. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci U S A. 2012;109:14693–8.

 

Yu Q, An L, Li W. The CBL–CIPK network mediates different signaling pathways in plants. Plant Cell Rep. 2013;33:203–14.

 

Zhang X, Peng H, Zhu S, Xing J, Li X, Zhu Z, et al. Nematode-Encoded RALF Peptide Mimics Facilitate Parasitism of Plants through the FERONIA Receptor Kinase. Mol Plant. 2020a;13:1434–54.

 

Zhang X, Yang Z, Wu D, Yu F. RALF–FERONIA Signaling: Linking Plant Immune Response with Cell Growth. Plant Commun. 2020b;1:100084.

 

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, Hsu CC, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A. 2018;115:13123–8.

 

Zheng X-y, Spivey Natalie W, Zeng W, Liu P-P, Fu Zheng Q, Klessig Daniel F, et al. Coronatine Promotes Pseudomonas syringae Virulence in Plants by Activating a Signaling Cascade that Inhibits Salicylic Acid Accumulation. Cell Host Microbe. 2012;11:587–96.

 

Zhong S, Li L, Wang Z, Ge Z, Li Q, Bleckmann A, et al. RALF peptide signaling controls the polytubey block in Arabidopsis. Science. 2022;375:290–6.

 

Zhu L, Liang Y, Zhang XQ, Chen LQ, Ye D, Chu LC. The arabidopsis CrRLK1L protein kinases BUPS1 and BUPS2 are required for normal growth of pollen tubes in the pistil. Plant J. 2018;95:474–86.

 

Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. The New Phytologist. 2021;232:1168–83.

 

Zou Y, Wang S, Zhou Y, Bai J, Huang G, Liu X, et al. Transcriptional Regulation of the Immune Receptor FLS2 Controls the Ontogeny of Plant Innate Immunity. Plant Cell. 2018;30:2779–94.

Molecular Horticulture
Pages 25-25
Cite this article:
Wang G, Zhao Z, Zheng X, et al. How a single receptor-like kinase exerts diverse roles: lessons from FERONIA. Molecular Horticulture, 2022, 2(4): 25. https://doi.org/10.1186/s43897-022-00046-9

300

Views

4

Downloads

9

Crossref

8

Web of Science

8

Scopus

Altmetrics

Received: 30 September 2022
Accepted: 09 November 2022
Published: 18 November 2022
© The Author(s) 2022.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return