AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Oxygenation alleviates waterlogging-caused damages to cherry rootstocks

Yuxuan Wang1Yan Xu1Jieming Xu1Wanxia Sun1Zhengxin Lv1Muhammad Aamir Manzoor1Xunju Liu1Zhiyu Shen1Jiyuan Wang1Ruie Liu1Matthew D. Whiting2Songtao Jiu1( )Caixi Zhang1( )
Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Horticulture, Washington State University, Prosser, WA 99350, USA
Show Author Information

Abstract

Waterlogging has occurred more frequently in recent years due to climate change, so it is a huge threat to crop yield and quality. Sweet cherry, a fruit tree with a high economic value, is sensitive to waterlogging stress. One of the most effective methods for enhancing the waterlogging tolerance of sweet cherries is to select waterlogging-tolerant rootstocks. However, the waterlogging tolerance of different cherry rootstocks, and the underlying mechanism remains uncharacterized. Thus, we first evaluated the waterlogging resistance of five sweet cherry rootstocks planted in China. The data showed that ‘Gisela 12’ and ‘Colt’ were the most waterlogging-sensitive and -tolerant among the five tested varieties, respectively. Oxygenation effectively alleviated the adverse impacts of waterlogging stress on cherry rootstocks. Moreover, we found that the waterlogging group had lower relative water content, Fv/Fm value, net photosynthetic rate, and higher antioxidant enzyme activities, whereas the oxygenated group performed better in all these parameters. RNA-Seq analysis revealed that numerous DEGs were involved in energy production, antioxidant metabolism, hormone metabolism pathways, and stress-related transcription factors. These findings will help provide management strategies to enhance the waterlogging tolerance of cherry rootstocks and thereby achieve higher yield and better quality of cherries.

Electronic Supplementary Material

Download File(s)
mh-3-2-8_ESM1.zip (106.2 MB)
mh-3-2-8_ESM2.zip (202.9 KB)

References

 

Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, et al. Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol Plant. 2014;150:446–62. https://doi.org/10.1111/ppl.12114.

 

Anders S, Huber W. Differential expression analysis for sequence count data. Nat Prec. 2010; 1–1. https://doi.org/10.1038/npre.2010.4282.1.

 

Andrade CA, de Souza KRD, de Oliveira SM, da Silva DM, Alves JD. Hydrogen peroxide promotes the tolerance of soybeans to waterlogging. Sci Horticult. 2018;232:40–5. https://doi.org/10.1016/j.scienta.2017.12.048.

 

Arif Y, Sami F, Siddiqui H, Bajguz A, Hayat S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ Exp Bot. 2020;175:104040. https://doi.org/10.1016/j.envexpbot.2020.104040.

 

Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997;7(10):986–95. https://doi.org/10.1101/gr.7.10.986.

 

Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, et al. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ. 2014;37:2313–24. https://doi.org/10.1111/pce.12377.

 

Bailey-Serres J, Voesenek L. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313–39. https://doi.org/10.1146/annurev.arplant.59.032607.092752.

 

Bailey-Serres J, Lee SC, Brinton E. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 2012;160(4):1698–709. https://doi.org/10.1104/pp.112.208173.

 

Bansal R, Srivastava JP. Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiol Plant. 2012;34:515–22. https://doi.org/10.1007/s11738-011-0848-z.

 

Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exp Bot. 2013;94:73–88. https://doi.org/10.1016/j.envexpbot.2012.05.003.

 

Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65(5):1229–40. https://doi.org/10.1093/jxb/ert375.

 

Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science. 2002;296:2026–8. https://doi.org/10.1126/science.1071505.

 

Dawood T, Yang X, Visser EJ, Te Beek TA, Kensche PR, Cristescu SM, et al. A co-opted hormonal cascade activates dormant adventitious root primordia under flooding in Solanum dulcamara. Plant Physiol. 2016;170(4):2351–64. https://doi.org/10.1104/pp.15.00773.

 

Erturk U, Sivritepe N, Yerlikaya C, Bor M, Ozdemir F, Turkan I. Responses of the cherry rootstock to salinity in vitro. Biol Plant. 2007;51(3):597–600. https://doi.org/10.1007/s10535-007-0132-7.

 

FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World 2020. Transforming food systems for affordable healthy diets. Rome: FAO. https://doi.org/10.4060/ca9692en.

 

Gong DY, Wang SW. Severe summer rainfall in China associated with enhanced global warming. Climate Res. 2000;16(1):51–9. https://doi.org/10.3354/cr016051.

 

Gutierrez L, Mongelard G, Flokova K, Pacurar DI, Novak O, Staswick P, et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell. 2012;24:2515–27. https://doi.org/10.1105/tpc.112.099119.

 

Hasanuzzaman M, Bhuyan M, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681. https://doi.org/10.3390/antiox9080681.

 

Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460:1026–30. https://doi.org/10.1038/nature08258.

 

Hayat Q, Hayat S, Irfan M, Ahmad A. Effect of exogenous salicylic acid under changing environment: A review. Environ Exp Bot. 2010;68(1):14–25. https://doi.org/10.1016/j.envexpbot.2009.08.005.

 

He F, Wang HL, Li HG, Su Y, Li S, Yang Y, et al. PeCHYR1, a ubiquitin E3 ligase from Populus euphratica, enhances drought tolerance via ABA-induced stomatal closure by ROS production in Populus. Plant Biotechnol J. 2018;16(8):1514–28. https://doi.org/10.1111/pbi.12893.

 

Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, et al. Global flood risk under climate change. Nat Clim Change. 2013;3:816–21. https://doi.org/10.1038/nclimate1911.

 

Huang X, von Rad U, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta. 2002;215:914–23. https://doi.org/10.1007/s00425-002-0828-z.

 

Jia H, Jiu S, Zhang C, Wang C, Tariq P, Liu Z, et al. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress ripening transcription factor. Plant Biotechnol J. 2016;14:2045–65. https://doi.org/10.1111/pbi.12563.

 

Jiu S, Xu Y, Wang J, Wang L, Wang S, Ma C, et al. Genome-wide identification, characterization, and transcript analysis of the TCP transcription factors in Vitis vinifera. Front Genet. 2019;10:1276. https://doi.org/10.3389/fgene.2019.01276.

 

Jiu S, Xu Y, Wang J, Wang L, Liu X, Sun W, et al. The cytochrome P450 monooxygenase inventory of grapevine (Vitis Vinifera L.): Genome-wide identification, evolutionary characterization and expression analysis. Front Genet. 2020;11:44. https://doi.org/10.3389/fgene.2020.00044.

 

Ju FY, Liu SD, Zhang SP, Ma HJ, Chen J, Ge CW, et al. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton. BMC Plant Biol. 2019;19:415. https://doi.org/10.1186/s12870-019-2011-8.

 

Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner F, Garcia RG, et al. The somatosensory link: S1 functional connectivity is altered by sustained pain and associated with clinical autonomic dysfunction in fibromyalgia. Arthritis Rheumatol. 2015a;67(5):1395–405. https://doi.org/10.1002/art.39043.

 

Kim YH, Hwang SJ, Waqas M, Khan AL, Lee JH, Lee JD, et al. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance. Front Plant Sci. 2015b;6:714. https://doi.org/10.3389/fpls.2015.00714.

 

Kuai J, Liu Z, Wang Y, Meng Y, Chen B, Zhao W, et al. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight. Plant Sci. 2014;223:79–98. https://doi.org/10.1016/j.plantsci.2014.03.010.

 

Kumutha D, Sairam RK, Ezhilmathi K, Chinnusamy V, Meena RC. Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase. Plant Sci. 2008;175:706–16. https://doi.org/10.1016/j.plantsci.2008.07.013.

 

Kuroha T, Nagai K, Gamuyao R, Wang DR, Furuta T, Nakamori M, et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science. 2018;361:181–6. https://doi.org/10.1126/science.aat1577.

 

Liao HB, Meng XL, Guo WD, Cao YB, Chen WR. Effects of different rootstocks on the flood resistance of sweet cherries. J Anhui Agric Sci. 2011;39(22):13335–9. https://doi.org/10.13989/j.cnki.0517-6611.2011.22.207.

 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

 

Luo Y, Sun J, Li Y, Xia R, Du Y, Yang S, et al. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China. J Meteorol Res. 2020;34:427–59. https://doi.org/10.1007/s13351-020-0006-x.

 

Lyu HM, Xu YS, Cheng WC, Arulrajah A. Flooding hazards across southern China and prospective sustainability measures. Sustainability. 2018;10(5):1682. https://doi.org/10.3390/su10051682.

 

Martínez-Romero D, Alburquerque N, Valverde JM, Guillén F, Castillo S, Valero D, et al. Postharvest sweet cherry quality and safety maintenance by Aloe vera treatment: A new edible coating. Postharvest Biol Technol. 2006;39:93–100. https://doi.org/10.1016/j.postharvbio.2005.09.006.

 

Meshi T, Iwabuchi M. Plant transcription factors. Plant Cell Physiol. 1995;36(8):1405–20. https://doi.org/10.1093/oxfordjournals.pcp.a078903.

 

Nagai K, Mori Y, Ishikawa S, Furuta T, Gamuyao RL, Niimi Y, et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature. 2020;584:109–14. https://doi.org/10.1038/s41586-020-2501-8.

 

Nan R, Carman JG, Salisbury FB. Water stress, CO2 and photoperiod influence hormone levels in wheat. J Plant Physiol. 2002;159:307–12. https://doi.org/10.1078/0176-1617-00703.

 

Pelah D, Wang W, Altman A, Shoseyov O, Bartels D. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant. 1997;99:153–9. https://doi.org/10.1111/j.1399-3054.1997.tb03443.x.

 

Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, et al. Arabidopsis nonsymbiotic hemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell. 2004;16(10):2785–94. https://doi.org/10.1105/tpc.104.025379.

 

Pucciariello C, Parlanti S, Banti V, Novi G, Perata P. Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. Plant Physiol. 2012;159(1):184–96. https://doi.org/10.1104/pp.111.191122.

 

Qi B, Yang Y, Yin Y, Xu M, Li H. De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol. 2014;14:201. https://doi.org/10.1186/s12870-014-0201-y.

 

Qi XH, Li QQ, Ma XT, Qian CL, Wang HH, Ren NN, et al. Waterlogging induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant Cell Environ. 2019;42:1458–70. https://doi.org/10.1111/pce.13504.

 

Quan J, Meng S, Guo E, Zhang S, Zhao Z, Yang X. De novo sequencing and comparative transcriptome analysis of adventitious root development induced by exogenous indole-3-butyric acid in cuttings of tetraploid black locust. BMC Genomics. 2017;18:179. https://doi.org/10.1186/s12864-017-3554-4.

 

Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B. NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis. Plant Cell. 2013;25:4941–55. https://doi.org/10.1105/tpc.113.117861.

 

Ricard B, Van Toai T, Chourey P, Saglio P. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol. 1998;116(4):1323–31. https://doi.org/10.1104/pp.116.4.1323.

 

Salah A, Zhan M, Cao C, Han Y, Ling L, Liu Z, et al. γ-Aminobutyric acid promotes chloroplast ultrastructure, antioxidant capacity, and growth of waterlogged maize seedlings. Sci Rep. 2019;9:484. https://doi.org/10.1038/s41598-018-36334-y.

 

Sivritepe N, Erturk U, Yerlikaya C, Turkan I, Bor M, Ozdemir F. Response of the cherry rootstock to water stress induced in vitro. Biol Plant. 2008;52(3):573–6. https://doi.org/10.1007/s10535-008-0114-4.

 

Steffens B, Steffen-Heins A, Sauter M. Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci. 2013;4:179. https://doi.org/10.3389/fpls.2013.00179.

 

Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta. 2007;226:465–74. https://doi.org/10.1007/s00425-007-0496-0.

 

Tanoue M, Hirabayashi Y, Ikeuchi H. Global-scale river flood vulnerability in the last 50 years. Sci Rep. 2016;6:36021. https://doi.org/10.1038/srep36021.

 

Voesenek LACJ, Bailey-Serres J. Flood adaptive traits and processes: an overview. New Phytol. 2015;206:57–73. https://doi.org/10.1111/nph.13209.

 

Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, et al. Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ. 2014;37:795–810. https://doi.org/10.1111/pce.12200.

 

Wang G, Fan W, Peng F. Physiological responses of the young peach tree to water-logging and spraying SA at different timing. J Fruit Sci. 2015;32(05):872–8. https://doi.org/10.13925/j.cnki.gsxb.20150051.

 

Wang X, Li M, Jannasch AH, Jiang Y. Submergence stress alters fructan and hormone metabolism and gene expression in perennial ryegrass with contrasting growth habits. Environ Exp Bot. 2020;179:104202. https://doi.org/10.1016/j.envexpbot.2020.104202.

 

Wheeler W, Black B, Bugbee B. Water Stress in Dwarfing Cherry Rootstocks: Increased Carbon Partitioning to Roots Facilitates Improved Tolerance of Drought. Horticulturae. 2021;7(11):424. https://doi.org/10.3390/horticulturae7110424.

 

Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet. 2009;10:305–17. https://doi.org/10.1038/nrg2558.

 

Xu X, Chen M, Ji J, Xu Q, Qi X, Chen X. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Plant Biol. 2017;17:129. https://doi.org/10.1186/s12870-017-1081-8.

 

Yamauchi T, Yoshioka M, Fukazawa A, Mori H, Nishizawa NK, Tsutsumi N, et al. An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygen-deficient conditions. Plant Cell. 2017;29:775–90. https://doi.org/10.1105/tpc.16.00976.

 

Yan K, Zhao S, Cui M, Han G, Wen P. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiol Biochem. 2018;125:239–46. https://doi.org/10.1016/j.plaphy.2018.02.017.

 

Zeng N, Yang Z, Zhang Z, Hu L, Chen L. Comparative Transcriptome Combined with Proteome Analyses Revealed Key Factors Involved in Alfalfa (Medicago sativa) Response to Waterlogging Stress. Int J Mol Sci. 2019;20(6):1359. https://doi.org/10.3390/ijms20061359.

 

Zhang Y, Chen Y, Lu H, Kong X, Dai J, Li Z, et al. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging. Field Crops Res. 2016;194:83–93. https://doi.org/10.1016/j.fcr.2016.05.006.

 

Zhang P, Lyu D, Jia L, He J, Qin S. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging. BMC Genomics. 2017;18:649. https://doi.org/10.1186/s12864-017-4055-1.

 

Zhang ZB, Lu SW, Yu WB, Ehsan S, Zhang YP, Jia HF, et al. Jasmonate increases terpene synthase expression, leading to strawberry resistance to Botrytis cinerea infection. Plant Cell Rep. 2022;41:1243–60. https://doi.org/10.1007/s00299-022-02854-1.

 

Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24. https://doi.org/10.1016/j.cell.2016.08.029.

Molecular Horticulture
Pages 8-8
Cite this article:
Wang Y, Xu Y, Xu J, et al. Oxygenation alleviates waterlogging-caused damages to cherry rootstocks. Molecular Horticulture, 2023, 3(2): 8. https://doi.org/10.1186/s43897-023-00056-1

154

Views

3

Downloads

1

Crossref

1

Web of Science

1

Scopus

Altmetrics

Received: 21 December 2022
Accepted: 21 March 2023
Published: 17 April 2023
© The Author(s) 2023.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Return