AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (894.5 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Literature review | Open Access

Development of Comprehensive PNT and Resilient PNT

Xia REN1,2Yuanxi YANG1,2( )
Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China
State Key Laboratory of Geo-Information Engineering, Xi'an 710054, China
Show Author Information

Abstract

Any single Positioning, Navigation and Timing (PNT) technology has its vulnerability and limits, even the powerful Global Navigation Satellite System (GNSS) is no exception. To provide continuous and reliable PNT information to users, the theory and technique of comprehensive PNT information system and resilient PNT application system have attracted great attention from Chinese scholars. We try to summarize the progress and development of the synthetic PNT system, including the proposal, the modification and the improvement of the comprehensive PNT, as well as the follow-up resilient PNT. The frame of China’s comprehensive PNT system consisted of comprehensive PNT infrastructure and comprehensive PNT application system is initially described; the achievements on some main PNT technologies are introduced; the conceptual models of resilient PNT are given; besides, existing researches on resilient function models and stochastic models are summarized according to different user scenarios.

References

[1]

YANG Yuanxi, REN Xia, JIA Xiaolin, et al. Development trends of the national secure PNT system based on BDS[J]. Science China Earth Sciences, 2023, 53(5): 929-938.

[2]
The State Council Information Office of the People's Republic of China. China's Beidou navigation satellite system in the new era[EB/OL].[2022-11-04]. http://www.scio.gov.cn/zfbps/32832/Document/1732795/1732795.htm.
[3]

YANG Yuanxi. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510. DOI: 10.11947/j.AGCS.2016.20160127.

[4]

YANG Yuanxi, LI Xiaoyan. Micro-PNT and comprehensive PNT[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1249-1254. DOI: 10.11947/j.AGCS.2017.20170249.

[5]

YANG Yuanxi. Resilient PNT concept frame[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 893-898. DOI: 10.11947/j.AGCS.2018.20180149.

[6]

YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1006-1012. DOI: 10.11947/j.AGCS.2021.20210051.

[7]

LIU Jingnan, LUO Yarong, GUO Chi, et al. PNT intelligence and intelligent PNT[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 811-828. DOI: 10.11947/j.AGCS.2022.20220152.

[8]

"Research on the Development Strategy of Chinese Disciplines and Frontier Fields (2021-2035)" Project Team. China's positioning, navigation, and timing 2035 development strategy[M]. Beijing:Science Press, 2023.

[9]

ZHANG Hengcai, YU Baoguo, BI Jinzhong, et al. A survey of scene-based augmentation systems for comprehensive PNT[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 491-505.

[10]

XIE Jun, KANG Chengbin. Engineering innovation and the development of the BDS-3 navigation constellation[J]. Engineering, 2021, 7(5): 558-563.

[11]

YANG Yuanxi, MAO Yue, SUN Bijiao. Basic performance and future developments of Beidou global navigation satellite system[J]. Satellite Navigation, 2020, 1(1): 1-8.

[12]

YANG Yuanxi, LIU Li, LI Jinlong, et al. Featured services and performance of BDS-3[J]. Science Bulletin, 2021, 66(20): 2135-2143.

[13]

GUO Shuren, CAI Hongling, MENG Yinan, et al. BDS-3 RNSS technical characteristics and service performance[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 810-821. DOI: 10.11947/j.AGCS.2019.20190091.

[14]

CAI Hongliang, MENG Yinan, GENG Changjiang, et al. BDS-3 performance assessment:PNT, SBAS, PPP, SMC and SAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 427-435. DOI: 10.11947/j.AGCS.2021.20200549.

[15]

YANG Yuanxi, DING Qun, GAO Weiguang, et al. Principle and performance of BDSBAS and PPP-B2b of BDS-3[J]. Satellite Navigation, 2022, 3(1): 5.

[16]

YU Deying, JIN Jihang, LIU Yi, et al. Marine precise positioning experimental analysis based on Beidou-3 PPP-B2b signal[J]. Hydrographic Surveying and Charting, 2022, 42(6): 51-55, 64.

[17]

YANG Yufei, YANG Yuanxi, CHEN Jinping, et al. Pseudostable constellation bias error of BDS-3 and its high-precision prediction[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1728-1737. DOI: 10.11947/j.AGCS.2021.20210084.

[18]

MA Fujian, ZHAN Xiaohong, LI Xingxing, et al. Hybrid constellation design using a genetic algorithm for a LEO-based navigation augmentation system[J]. GPS Solutions, 2020, 24(2): 62.

[19]

MENG Yansong, BIAN Lang, WANG Ying, et al. Global navigation augmentation system based on Hongyan satellite constellation[J]. Space International, 2018(10): 20-27.

[20]

HOU Zhenwei, YI Xianqing, ZHANG Yaohong,et al. Satelliteground link planning for LEO satellite navigation augmentation networks[J]. IEEE Access, 2019, 7:98715-98724.

[21]

ZHANG Yang, LI Zishen, LI Ran, et al. Orbital design of LEO navigation constellations and assessment of their augmentation to BDS[J]. Advances in Space Research, 2020, 66(8): 1911-1923.

[22]

MENG Lingdong, CHEN Junping, WANG Jiexian, et al. Broadcast ephemerides for LEO augmentation satellites based on nonsingular elements[J]. GPS Solutions, 2021, 25(4): 129.

[23]

GE Haibo, LI Bofeng, GE Maorong, et al. Initial assessment of precise point positioning with LEO enhanced Global Navigation Satellite Systems (LeGNSS)[J]. Remote Sensing, 2018, 10(7): 984.

[24]

LI Xingxing, MA Fujian, LI Xin, et al. LEO constellation-augmented multi-GNSS for rapid PPP convergence[J]. Journal of Geodesy, 2019, 93(5): 749-764.

[25]

JIANG Lianjiang,WANG Taosheng. Present and development thinking of BDS ground-based augmentation system[J]. Satellite Application, 2021, 11:8-12.

[26]

JIA Yu. Development and application overview of GBAS in civil aviation[J]. Modern Navigation, 2020, 11(4): 272-276.

[27]

ZHAO Wei, WANG Qiang, SHANG Keyi, et al. Electric power industry precise time-space service network based on BD navigation system[J]. Electric Power ICT, 2021, 19(7): 75-82.

[28]

HU Anping. Research on the development of land-based ultralong-range radio navigation[J]. Navigation Positioning & Timing, 2018, 5(5): 1-6.

[29]

ZHEN Weimin, DING Changchun. Development status and trend of land-based radio navigation system[J]. GNSS Would of China, 2019, 44(1): 10-15.

[30]

YIN Lu,MA Yuzheng, LI Guowei, et al. Research progress of communication-positioning integrated technology[J]. Navigation Positioning & Timing, 2020, 7(4): 64-76.

[31]

SUN Dajun, ZHENG Cuie, ZHANG Jucheng, et al. Development and prospect for underwater acoustic positioning and navigation technology[J]. Bulletin Chinese Academy of Sciences, 2019, 34(3): 331-338.

[32]

YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Science, 2020, 63(8): 1188-1198.

[33]

MING Feng, YANG Yuanxi, ZENG Anmin, et al. The conceptual connotation, characteristics and discrimination of resilient PNT[J]. Bulletin of Surveying and Mapping, 2023(4): 79-86, 176. DOI: 10.13474/j.cnki.11-2246.2023.0108.

[34]

BIAN Hongwei, XU Jiangning, HE Hongyang, et al. The concept of resilience of national comprehensive PNT system[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1265-1272.

[35]

YANG Yuanxi, CUI Xianqiang, GAO Weiguang. Adaptive integrated navigation for multi-sensor adjustment outputs[J]. The Journal of Navigation, 2004, 57(2): 287-295.

[36]

YANG Yuanxi, GAO Weiguang. Integrated navigation by using variance component estimates of multi-sensor measurements and adaptive weights of dynamic model information[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(1): 22-26.

[37]

YANG Yuanxi, HE Haibo, XU Guochang. Adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy, 2001, 75(2): 109-116.

[38]

QI Ke, QU Guoqing, XUE Shuqiang, et al. Analytical optimization on GNSS buoy array for underwater positioning[J]. Acta Oceanologica Sinica, 2019, 38(7): 137-143.

[39]

YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7): 79.

[40]

WANG Junting, XU Tianhe, LIU Yangfan, et al. Kalman filter based acoustic positioning of deep seafloor datum point with two-step systematic error estimation[J]. Applied Ocean Research, 2021, 114:102817.

[41]

WANG Junting, XU Tianhe, LIU Yangfan, et al. Augmented underwater acoustic navigation with systematic error modeling based on seafloor datum network[J]. Marine Geodesy, 2023, 46(2): 129-148.

[42]

WANG Junting, XU Tianhe, ZHANG Bingsheng, et al. Underwater acoustic positioning based on the robust zerodifference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26(3): 734-749.

[43]

SUN Rui, ZHANG Zixuan, CHENG Qi, et al. Pseudorange error prediction for adaptive tightly coupled GNSS/IMU navigation in urban areas[J]. GPS Solutions, 2022, 26(1): 28.

[44]

MENG Qian, JIANG Yingying, WANG Lihui, et al. Multi-source navigation information resilient fusion method under urban canyon scenario[J]. Navigation and Control, 2023, 22(2): 16-22.

[45]

LI Tong, ZHANG Huibing, LIU Dingke, et al. Multi-sensor fusion for navigation technology and trajectory prediction under urban roads[J]. Bulletin of Surveying and Mapping, 2019(11): 44-50.

[46]

MU Mengxue, ZHAO Long. A GNSS/INS-integrated system for an arbitrarily mounted land vehicle navigation device[J]. GPS Solutions, 2019, 23(4): 112.

[47]

MU Mengxue, ZHAO Long. Improved decentralized GNSS/SINS/odometer fusion system for land vehicle navigation applications[J]. Measurement Science and Technology, 2023, 34(3): 035117.

[48]
MU Mengxue, ZHAO Long. A data fusion algorithm of GNSS/INS/odometer integrated system in consideration of total odometer errors[C]//Proceedings of 202121st International Conference on Control, Automation and Systems (ICCAS 2021). Jeju, Korea: IEEE, 2021: 1093-1098.
[49]

ZHANG Wei, YANG Yuanxi, ZENG Anmin, et al. A GNSS/5G integrated three-dimensional positioning scheme based on D2D communication[J]. Remote Sensing, 2022, 14(6): 1517.

[50]

ZHANG Wei, YANG Yuanxi, ZENG Anmin, et al. Robust BDS/5G integrated positioning based on resilient observation model[J]. Advances in Space Research, 2023, 71(10): 4006-4017.

[51]

YANG Gaochao, WANG Qing, YU Baoguo, et al. High-precision indoor positioning based on robust LM visual inertial odometer and pseudosatellite[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 18-30. DOI: 10.11947/j.AGCS.2022.20200251.

[52]

CHEN Ruizhi, GUO Guangyi, YE Feng, et al. Tightly-coupled integration of acoustic signal and MEMS sensors on smartphones for indoor positioning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2): 143-152. DOI:10.11947/j.AGCS.2021.20200551.

Journal of Geodesy and Geoinformation Science
Pages 1-8
Cite this article:
REN X, YANG Y. Development of Comprehensive PNT and Resilient PNT. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 1-8. https://doi.org/10.11947/j.JGGS.2023.0301

616

Views

71

Downloads

0

Crossref

2

Scopus

0

CSCD

Altmetrics

Received: 14 August 2023
Accepted: 26 August 2023
Published: 20 September 2023
© 2023 Journal of Geodesy and Geoinformation Science
Return