AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Literature review | Open Access

The Progress of IGS Analysis Center at Wuhan University

Weiping JIANGQile ZHAOMin LI( )Jing GUOJianghui GENGZhao LIShengfeng GUQiang ZHANGZhigang HUNa WEI
GNSS Research Center, Wuhan University, Wuhan 430079, China
Show Author Information

Abstract

As one of the Analysis Centers (AC) of the International GNSS Service (IGS), Wuhan University (WHU) has been contributing to the IGS by providing ultra-rapid as well as rapid orbit and clock solutions for the established GPS and GLONASS since 2012. In the same year, the IGS initiated the Multi-GNSS Experiment (MGEX) to support the analysis of the emerging GNSS systems and prepare the IGS for Multi-GNSS, which includes GPS, GLONASS, the European Galileo system, the Chinese Beidou Navigation Satellite System (BDS), the Japanese Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite System (IRNSS/NaVIC). The major products, i.e., orbits, Earth Orientation Parameters (EOPs), satellite clock as well as attitude have also been provided by WHU since 2012. More recently, WHU has engaged the third reprocessing of IGS for generating the highly accurate station coordinates as inputs for establishment of the International Terrestrial Reference Frame (ITRF) 2020 during 2019—2020. This article presents the recent major advancements of the IGS AC at Wuhan University, including precise products, real-time products, bias products, antenna phase center calibration, and the non-linear motion modeling for GNSS Reference Stations.

References

[1]

BEUTLER G, ROTHACHER M, SCHAER S, et al. The International GPS Service (IGS): an interdisciplinary service in support of earth sciences[J]. Advances in Space Research, 1999, 23(4): 631-653. DOI: 10.1016/S0273-1177(99)00160-X.

[2]

BEUTLER G, MOORE A W, MUELLER I I. The international global navigation satellite systems service:development and achievements[J]. Journal of Geodesy, 2009, 83(3): 297-307.

[3]

DOW J M, NEILAN R E, RIZOS C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems[J]. Journal of Geodesy, 2009, 83(3-4): 191-198. DOI: 10.1007/s00190-008-0300-3.

[4]

GUO Jing, XU Xiaolong, ZHAO Qile, et al. Precise orbit determination for quad-constellation satellites at Wuhan University:strategy, result validation, and comparison[J]. Journal of Geodesy, 2016, 90(2): 143-159. DOI: 10.1007/s00190-015-0862-9.

[5]

MONTENBRUCK O, STEIGENBERGER P, PRANGE L, et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—achievements, prospects and challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697. DOI: 10.1016/j.asr.2017.01.011.

[6]

GENG Jianghui, ZHANG Qiyuan, LI Guangcai, et al. Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center's rapid satellite products[J]. Satellite Navigation, 2022, 3(1): 23. DOI: 10.1186/s43020-022-00084-0.

[7]

CHEN Guo, GUO Jing, GENG Tao, et al. Multi-GNSS orbit combination at Wuhan University:strategy and preliminary products[J]. Journal of Geodesy, 2023, 97(5): 41. DOI: 10.1007/s00190-023-01732-2.

[8]

WANG Chen, GUO Jing, ZHAO Qile, et al. Empirically derived model of solar radiation pressure for Beidou GEO satellites[J]. Journal of Geodesy, 2019, 93(6): 791-807. DOI: 10.1007/s00190-018-1199-y.

[9]

GUO Jing, WANG Chen, CHEN Guo, et al. BDS-3 precise orbit and clock solution at Wuhan University:status and improvement[J]. Journal of Geodesy, 2023, 97(2): 15. DOI: 10.1007/s00190-023-01705-5.

[10]

MONTENBRUCK O, STEIGENBERGER P, HUGENTOBLER U. Enhanced solar radiation pressure modeling for Galileo satellites[J]. Journal of Geodesy, 2015, 89(3): 283-297. DOI: 10.1007/s00190-014-0774-0.

[11]

MONTENBRUCK O, STEIGENBERGER P, DARUGNA F. Semianalytical solar radiation pressure modeling for QZS-1 orbitnormal and yaw-steering attitude[J]. Advances in Space Research, 2017, 59(8): 2088-2100. DOI: 10.1016/j.asr.2017.01.036.

[12]

ZHAO Qile, CHEN Guo, GUO Jing, et al. An a priori solar radiation pressure model for the QZSS Michibiki satellite[J]. Journal of Geodesy, 2018, 92(2): 109-121. DOI: 10.1007/s00190-017-1048-4.

[13]
GSA. European GNSS Service Center; Galileo satellite metadata [EB/OL].[2023-02-01]. https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata.
[14]
CAO. Cabinet Office; The history information of QZS-1 operation[EB/OL].[2023-02-01]. https://qzss.go.jp/en/technical/qzssinfo/khp0mf0000000wuf-att/ohi-qzs1_1_1.pdf.
[15]
RODRÍGUEZ SOLANO C J. Impact of albedo modelling on GPS orbits[D]. München: Technische Universität München, 2009.
[16]

STEIGENBERGER P, THOELERT S, MONTENBRUCK O. GNSS satellite transmit power and its impact on orbit determination[J]. Journal of Geodesy, 2018, 92(6): 609-624. DOI: 10.1007/s00190-017-1082-2.

[17]

WANG Chen, GUO Jing, ZHAO Qile, et al. Improving the orbits of the BDS-2 IGSO and MEO satellites with compensating thermal radiation pressure parameters[J]. Remote Sensing, 2022, 14(3): 641.

[18]
CSNO. Beidou satellite information file[R/OL].[2023-02-01]. http://www.beidou.gov.cn/yw/gfgg/201912/W020191230559858089737.rar.
[19]

KOUBA J. A simplified yaw-attitude model for eclipsing GPS satellites[J]. GPS Solutions, 2009, 13(1): 1-12. DOI: 10.1007/s10291-008-0092-1.

[20]
DILSSNER F, SPRINGER T, ENDERLE W. GPS IIF yaw attitude control during eclipse season[C]//Proceedings of the American Geophysical Union, Fall Meeting 2011. San Francisco, CA: AGU, 2011: G54A-04.
[21]

MONTENBRUCK O, SCHMID R, MERCIER F, et al. GNSS satellite geometry and attitude models[J]. Advances in Space Research, 2015, 56(6): 1015-1029. DOI: 10.1016/j.asr.2015.06.019.

[22]

WANG Chen, GUO Jing, ZHAO Qile, et al. Yaw attitude modeling for Beidou I06 and Beidou-3 satellites[J]. GPS Solutions, 2018, 22(4): 117. DOI: 10.1007/s10291-018-0783-1.

[23]

YANG Chao, GUO Jing, ZHAO Qile. Yaw attitudes for BDS-3 IGSO and MEO satellites:estimation, validation and modeling with intersatellite link observations[J]. Journal of Geodesy, 2023, 97(1): 6. DOI: 10.1007/s00190-022-01698-7.

[24]

ZHAO Qile, WANG Yintong, GU Shengfeng, et al. Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing[J]. Journal of Geodesy, 2019, 93(4): 545-560. DOI: 10.1007/s00190-018-1180-9.

[25]

GU Shengfeng, GAN Chengkun, HE Chengpeng, et al. Quasi-4-dimension ionospheric modeling and its application in PPP[J]. Satellite Navigation, 2022, 3(1): 24. DOI: 10.1186/s43020-022-00085-z.

[26]

ZHANG Hongping, XU Peiliang, HAN Wenhui, et al. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares[J]. Advances in Space Research, 2013, 51(6): 988-1000. DOI: 10.1016/j.asr.2012.06.026.

[27]

ZHANG Qiang, ZHAO Qile. Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software[J]. Remote Sensing, 2018, 10(5): 705. DOI: 10.3390/rs10050705.

[28]

GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University[J]. Journal of Geodesy, 2019, 93(10): 2053-2067. DOI: 10.1007/s00190-019-01301-6.

[29]
SCHAER S. SINEX_Bias-Solution (software/technique) IN-dependent exchange format for GNSS biases version 1.00[EB/OL]. (2016-12-07).[2023-02-01]. https://files.igs.org/pub/data/format/sinex_bias_100.pdf.
[30]

GENG Jianghui, CHEN Xingyu, PAN Yuanxin, et al. PRIDE PPP-AR:an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 91. DOI: 10.1007/s10291-019-0888-1.

[31]

GENG Jinghui, WEN Qiang, ZHANG Qiyuan, et al. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution[J]. Journal of Geodesy, 2022, 96(2): 11. DOI: 10.1007/s00190-022-01602-3.

[32]

LI Bofeng, GE Haibo, BU Yuhang, et al. Comprehensive assessment of real-time precise products from IGS analysis centers[J]. Satellite Navigation, 2022, 3(1): 12. DOI: 10.1186/s43020-022-00074-2.

[33]

YANG Xinhao, GU Shengfeng, GONG Xiaopeng, et al. Regional BDS satellite clock estimation with triple-frequency ambiguity resolution based on undifferenced observation[J]. GPS Solutions, 2019, 23(2): 33. DOI: 10.1007/s10291-019-0828-0.

[34]

SHI Chuang, GUO Shiwei, GU Shengfeng, et al. Multi-GNSS satellite clock estimation constrained with oscillator noise model in the existence of data discontinuity[J]. Journal of Geodesy, 2019, 93(4): 515-528. DOI: 10.1007/s00190-018-1178-3.

[35]

PENG Yaquan, LOU Yidong, GONG Xiaopeng, et al. Realtime clock prediction of multi-GNSS satellites and its application in precise point positioning[J]. Advances in Space Research, 2019, 64(7): 1445-1454. DOI: 10.1016/j.asr.2019.06.040.

[36]

FU Wenju, HUANG Guanwen, ZHANG Qin, et al. Multi-GNSS real-time clock estimation using sequential least square adjustment with online quality control[J]. Journal of Geodesy, 2019, 93(7): 963-976. DOI: 10.1007/s00190-018-1218-z.

[37]

ZHANG Zheng, LOU Yidong, ZHENG Fu, et al. On GLO-NASS pseudo-range inter-frequency bias solution with ionospheric delay modeling and the undifferenced uncombined PPP[J]. Journal of Geodesy, 2021, 95(3): 32. DOI: 10.1007/s00190-021-01480-1.

[38]

HU Zhigang, ZHAO Qile, CHEN Guo, et al. First results of field absolute calibration of the GPS receiver antenna at Wuhan University[J]. Sensors, 2015, 15(11): 28717-28731. DOI: 10.3390/s151128717.

[39]

ZHOU Renyu, HU Zhigang, ZHAO Qile, et al. Consistency analysis of the GNSS antenna phase center correction models[J]. Remote Sensing, 2022, 14(3): 540. DOI: 10.3390/rs14030540.

[40]
HU Zhigang, CAI Hongliang, JIAO Wenhai, et al. Preliminary results of iGMAS BDS/GNSS absolute antenna phase center field calibration[M]//YANG Changfeng, XIE Jun. China Satellite Navigation Conference (CSNC 2022) Proceedings. Singapore: Springer, 2022: 147-160.
[41]

JIANG Weiping, LI Zhao, VAN DAM T, et al. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series[J]. Journal of Geodesy, 2013, 87(7): 687-703. DOI: 10.1007/s00190-013-0642-3.

[42]

WANG Kaihua, CHEN Hua, JIANG Weiping, et al. Improved vertical displacements induced by a refined thermal expansion model and its quantitative analysis in GPS height time series[J]. Journal of Geophysics and Engineering, 2018, 15(2): 554-567. DOI: 10.1088/1742-2140/aa93ae.

Journal of Geodesy and Geoinformation Science
Pages 46-57
Cite this article:
JIANG W, ZHAO Q, LI M, et al. The Progress of IGS Analysis Center at Wuhan University. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 46-57. https://doi.org/10.11947/j.JGGS.2023.0305

689

Views

34

Downloads

0

Crossref

1

Scopus

1

CSCD

Altmetrics

Received: 21 August 2023
Accepted: 26 August 2023
Published: 20 September 2023
© 2023 Journal of Geodesy and Geoinformation Science
Return