AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (522.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Literature review | Open Access

Recent Advances in Marine Geodesy of China

Shuqiang XUE1Tianhe XU2Yanxiong LIU3Anmin ZENG4Baogui KE1Shuang ZHAO1
Chinese Academy of Surveying and Mapping, Beijing 100036, China
School of Space Science and Physics, Shandong University (Weihai), Weihai 264209, China
The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Xi’an Institute of Surveying and Mapping, Xi’an 710054, China
Show Author Information

Abstract

The ocean accounts for approximately 71% of the total area of the Earth. Whether it is studying the shape of the Earth itself through geodesy or the future development of earth system science, strengthening the construction of ocean geodesy disciplines and innovating ocean geodetic observation technologies have evident theoretical and practical significance. In recent years, the discipline of ocean geodesy in China has been continuously developing and growing, and notable breakthroughs have been made in ocean satellite geodesy and seafloor geodetic observation technology. Research on ocean geodetic observation models and algorithms has also made great progress.

References

[1]

Chinese Academy of Sciences. Ocean geodetic datum and underwater navigation[M]. Beijing: Science Press, 2022.

[2]

YANG Yuanxi, WANG Jianrong.Ubiquitous perception and space mapping[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 1-7. DOI: 10.11947/j.AGCS.2023.20220405.

[3]

YANG Yuanxi, WANG Jianrong, LOU Liangsheng, et al. Development status and prospect ofsatellite-based surveying[J]. Chinese Space Science and Technology, 2022, 42(3): 1-9.

[4]

YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Sciences, 2020, 63(8): 1188-1198.

[5]

YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7): 79.

[6]

XUE Shuqiang, YANG Yuanxi, YANG Wenlong. Single-differenced models for GNSS-acousticseafloor point positioning[J]. Journal of Geodesy, 2022, 96(5): 38.

[7]

ZHAO Shuang, WANG Zhenjie, NIE Zhixi, et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/Acoustic precise underwater point positioning[J]. Ocean Engineering, 2021, 221: 108533.

[8]

HU Yuan, GU Shisen, LIU Wei, et al. Technical progress of satellite-borne GNSS-R monitoring sea surface targets[J]. GNSS World of China, 2023, 48(1): 125-132.

[9]

BU Jinwei, YU Kegen, HAN Shuai. Construction of spaceborne GNSS-R ocean waves significant wave height retrieval model [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(9): 1920-1930. DOI: 10.11947/j.AGCS.2022.20210284.

[10]

XIONG Zhiming, YANG Bonan, CAO Juliang, et al. Underwater dynamic gravimetry based on SINS/USBL/DG[J]. Hydrographic Surveying and Charting, 2023, 43(1): 15-18, 23.

[11]

DONG Qinqin, LIU Kun, TU Haibo, et al. An electromagnetic damper scheme for CHZ-Ⅱ gravimeter[J]. Navigation and Control, 2022, 21(5-6): 91-100.

[12]

ZHANG Feifei, SUN Jianwei, HAN Bo, et al. The result analysis of the comparison between SAG-2M and KSS31M marine gravimeters[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 870-877.

[13]

XIAO Peng, FANG Xudong. Comparison and analysis of the new generation Microg LaCoste SⅢ marine gravimeter on the same ship[J]. Geomatics & Spatial Information Technology, 2022, 45(12): 61-64, 68.

[14]

YUAN Yuan, GAO Jinyao, GAO Wei.A new shipborne gravimeter ZL11-1A based on inertial stabilization platform and its performance evaluation[J]. Hydrographic Surveying and Charting, 2021, 41(1): 22-26.

[15]
LI Zhongya, HU Minzhang, WANG Yong, et al. Field test results of domestic Rubidium atomic absolute gravimeter[C]//Proceedings of 2021 Annual Conference of Chinese Geoscience Union. [S.l.]: Chinese Geoscience Union, 2021.
[16]

ZHAI Zhenhe, FAN Haopeng, GUAN Bin, et al. First flight test and accuracy evaluation of domestic dynamic gravimeter through the principle of zero length spring[J]. Bulletin of Surveying and Mapping, 2021(2): 68-71. DOI: 10.13474/j.cnki.11-2246.2021.0046.

[17]

SU Duowu, WANG Qiyu, ZHANG Chuan, et al. Gravity calibrationat the Zhongshan Station in Antarctica by using a domestic absolute gravimeter[J]. Metrology Science and Technology, 2021, 65(8): 36-41.

[18]

SUN Yongchao, FENG Yuxiang, CUI Xiangbin, et al. Application research of domestic airborne gravimeter in Antarctica [J]. Marine Surveying and Mapping, 2022, 42(3): 9-12, 21.

[19]

HUANG Motao, DENG Kailiang, OUYANG Yongzhong, et al. Application of satellite altimeter-derived gravity model in the error detection of shipborne and airborne gravimetry[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(9): 126-133.

[20]

HUANG Motao, DENG Kailiang, OUYANG Yongzhong et al. Development and study in marine and airborne gravimetry and its application[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1635-1650.

[21]
KE Baogui, ZHAO Yufei. Optimal selection weight value of gravity network data based on membership function[EB/OL]. [2023-06-13]. https:igrf2022.org/.
[22]
KE Baogui, MI Jinzhong, et al. Seamless processing for shipborne gravity data[EB/OL]. [2023-06-13]. https://files.sciconf.cn/upload/file/20210610/I021061010105_58580.pdf.
[23]

WU Lixin, JING Zhao, CHEN Xianyao, et al. Marine science in China:current status and future outlooks[J]. Earth Science Frontiers, 2022, 29(5): 1-12.

[24]

CHEN Guanxu, LIU Yang, LI Menghao, et al. Review on the processing methods of sound speed errors in GNSS-acoustic seafloor positioning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1349-1363.

[25]

ZENG Anmin, YANG Yuanxi, MING Feng, et al. Positioning model and analysis of the sailing circle mode of seafloor geodetic datum points[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 939-952. DOI: 10.11947/j.AGCS.2021.20200529.

[26]

ZHU Chengcheng, GUO Jinyun, GAO Jinyao, et al. Marine gravity determined from multi-satellite GM/ERM altimeter data over the South China Sea: SCSGA V1.0[J]. Journal of Geodesy, 2020, 94(5): 50.

[27]

LIU Xiaoxing, CAI Tijing, JIN Weiming. Comparative study on filtering methods in ocean gravity measurement[J]. Piezoelectrics & Acoustooptics, 2022, 44(6): 913-916.

[28]

HAN Xiaohui, YANG Xinfa, LIU Gang, et al. A new method for correction of gravity base station readings in marine gravimetric survey[J]. Hydrographic Surveying and Charting, 2022, 42(6): 21-24.

[29]

LIU Bei, BIAN Shaofeng, JI Bing, et al. Application of wavelet transform in shipborne ocean gravimetry data processing and analysis[J]. Systems Engineering and Electronics, 2023, 45(3): 654-659.

[30]

DONG Qingliang, CHEN Jie, PAN Le, et al. Assessment of the quality of marine gravity measurements based on the DTU model data[J]. Hydrographic Surveying and Charting, 2020, 40(2): 33-35, 51.

[31]

HU Minzhang, LI Jiancheng, XING Lelin. Global bathymetry model predicted from vertical gravity gradient anomalies[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 558-565, 574.

[32]

ZHAI Zhenhe, SUN Zhongmiao, XIAO Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1030-1035, 1128.

[33]

MA Yueyuan, YANG Yuanxi, ZENG Anmin. GNSS-A straightline survey pattern and trajectory combination optimization analysis[J]. Chinese Journal of Geophysics, 2022, 65(10): 3797-3808.

[34]

CHEN Guanxu, LIU Yang, LIU Yanxiong, et al. Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations[J]. Journal of Geodesy, 2020, 94(6): 61.

[35]

LI Menghao, LIU Yang, LIU Yanxiong, et al. Simulative evaluation of the underwater geodetic network configuration on kinematic positioning performance[J]. Remote Sensing, 2022, 14(8): 1939.

[36]

WANG Junting, XU Tianhe, NIE Wenfeng, et al. The Construction of sound speed field based on back propagation neural network in the global ocean[J]. Marine Geodesy, 2020, 43(6): 621-642.

[37]

WANG Junting, XU Tianhe, LIU Yangfan. Augmented underwater acoustic navigation with systematic error modeling based on seafloor datum network[J]. Marine Geodesy, 2023, 46(2): 129-148.

[38]

WANG Junting, XU Tianhe,ZHANG Bingsheng, et al. Underwater acoustic positioning based on the robust zerodifference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26(3): 734-749.

[39]

CHEN Guanxu, GAO Kefu, ZHAO Jianhu, et al. The method of sound speed errors correction in GNSS-acoustic location service[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 536-549. DOI: 10.11947/j.AGCS.2023.20220097.

[40]

LIU Yanxiong, LI Menghao, LIU Yang, et al. Research progress of seafloor geodetic datum construction technology[J]. Advances in Marine Science, 2022, 40(4): 684-700.

[41]

ZHANG Shengqiu, YANG Yuanxi, XU Tianhe. Estimation of ocean sound velocity variation based on GNSS-A and its influence on positioning[J]. Chinese Journal of Geophysics, 2023, 66(3): 961-972.

[42]

ZHAO Shuang, WANG Zhenjie, NIE Zhixi, et al. Precise positioning method for seafloor geodetic stations based on the temporal variation of sound speed structure[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 41-50. DOI: 10.11947/j.AGCS.2023.20210326.

[43]
ZHAO Shuang, YOKOTA Y, WANG Zhenjie, et al. Investigation on GNSS-A precise point positioning based on adaptively robust filter considering the horizontal heterogeneity of sound speed structure[C]//Proceedings of 2023 IEEE Underwater Technology. Tokyo, Japan: IEEE, 2023: 67-73.
[44]

WANG Zhenjie, LIU Yangfan, ZHAO Shang, et al. Streamlined method for sound velocity profile based on K-Means++[J]. Journal of Harbin Engineering University, 2020, 41(7): 985-990.

[45]

XIN Mingzhen, GE Maorong, YANG Fanlin, et al. A sound ray tracing positioning method for marine geodetic datum considering the effect of transceiver separation[J]. Chinese Journal of Geophysics, 2022, 65(10): 3809-3817.

[46]

YAN Fengchi, WANG Zhenjie, ZHAO Shuang, et al. A layered constant gradient acoustic ray tracing underwater positioning algorithm considering round-trip acoustic path[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 31-40. DOI: 10.11947/j.AGCS.2022.20210234.

[47]

YANG Wenlong, XUE Shuqiang, LIU Yixu. P-order secant method for rapidly solving the ray inverse problem of underwater acoustic positioning[J]. Marine Geodesy, 2023, 46(1): 3-15.

[48]

QIN Xianping, YANG Yuanxi, SUN Bijiao. A robust method to estimate the coordinates of seafloor stations by direct-path ranging[J]. Marine Geodesy, 2023, 46(1): 83-98.

[49]

SUN Dajun, YU Miao, ZHENG Cuie, et al. Improved seafloor geodetic positioning via sound velocity correction based on the precise round-trip acoustic positioning model[J]. Marine Geodesy, 2023, 46(1): 43-61.

[50]
LI Jingsen, XUE Shuqiang, XIAO Zhen, et al. Uncertainty evaluation on the arm length correction of GNSS-A observation[J/OL]. [2023-08-08]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220673.
[51]

KUANG Yingcai, Lyu Zhiping, WANG Fangchao, et al. A nonlinear gauss-helmert model and its robust solution for seafloor control point positioning[J]. Marine Geodesy, 2023, 46(1): 16-42.

[52]

MING Feng, YANG Yuanxi, ZENG Anmin. Positioning accuracy of GNSS-A in deep sea based on Bayesian estimation[J]. Chinese Journal of Geophysics, 2023, 66(3): 951-960.

[53]

KUANG Yingcai, LÜ Zhiping, WANG Fangchao, et al. The adaptive filtering algorithm of GNSS/acoustic joint positioning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 854-864. DOI: 10.11947/j.AGCS.2020.20190393.

[54]

KUANG Yingcai, LÜ Zhiping, LI Linyang, et al. Robust constrained kalman filter algorithm considering time registration for GNSS/acoustic joint positioning[J]. Applied Ocean Research, 2021, 107: 102435.

[55]

SHAN Rui, LIU Huimin, ZHAO Shuang, et al. Investigation on vertical position and soundvelocity variation for GNSS/acoustic seafloor geodetic calibration based on moving survey data[J]. Remote Sensing, 2022, 14(15): 3739.

[56]

YU Miao, CAI Kuijie, ZHENG Cuie, et al. Improvement of seafloor positioning through correction of sound speed profile temporal variation[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(4): 1099-1101.

[57]

GENG Hong, WANG Wei, XING Chengbin. Research on tide fitting and interpolation based on ARMA model[J]. Hydrographic Surveying and Charting, 2021, 41(5): 17-20, 25.

[58]

WANG Xinpu, XUE Shuqiang, QU Guoqing, et al. Disturbance analysis of underwater positioning acoustic ray and design of piecewise exponential weight function[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 982-989. DOI: 10.11947/j.AGCS.2021.20200424.

[59]

ZHAO Shuang, WANG Zhenjie, HE Kaifei, et al. Investigation on stochastic model refinement for precise underwater positioning[J]. IEEE Journal of Oceanic Engineering, 2020, 45(4): 1482-1496.

[60]
SUN Yue, XUE Shuqiang, HAN Baomin, et al. Multi-station joint processing model for seafloor geodetic coordinate time series[J/OL]. Acta Geodaetica et Cartographica Sinica. [2023-06-13]. http://kns.cnki.net/kcms/detail/11.2089.P.20230601.1503.002.html.
[61]

ZHAO Jianhu, LIANG Wenbiao, MA Jinye, et al. A self-constraint underwater positioning method without the assistance of measured sound velocity profile[J]. Marine Geodesy, 2023, 46(1): 62-82.

Journal of Geodesy and Geoinformation Science
Pages 58-66
Cite this article:
XUE S, XU T, LIU Y, et al. Recent Advances in Marine Geodesy of China. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 58-66. https://doi.org/10.11947/j.JGGS.2023.0306

570

Views

41

Downloads

0

Crossref

0

Scopus

0

CSCD

Altmetrics

Received: 21 August 2023
Accepted: 26 August 2023
Published: 20 September 2023
© 2023 Journal of Geodesy and Geoinformation Science
Return