AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (398.2 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Open Access

Development of Integrated and Intelligent Geodetic and Photogrammetry Satellites with Corresponding Key Technologies

Yuanxi YANG1,2Xia REN1,2Jianrong WANG1,2
State Key Laboratory of Geo-Information Engineering, Xi'an 710054, China
Xi'an Research Institute of Surveying and Mapping, Xi'an 710054, China
Show Author Information

Abstract

Aerospace surveying and mapping has become the main method of global earth observation. It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines. In this paper, the geodetic satellites and photographic satellites are introduced respectively. Then, the existing problems in Chinese earth observation satellites are analyzed, and the comprehensive satellite with integrated payloads, the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites. The possibility of the three ideas is discussed in detail, as well as the related key technologies.

References

[1]

WANG Jianrong, WANG Renxiang, HU Xin. Development of optical satellite photogrammetry[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(2): 12-16.

[2]

YANG Yuanxi, WANG Jianrong, LOU Liangsheng, et al. Development status and prospect of satellite-based surveying[J]. Chinese Space Science and Technology, 2022, 42(3): 1-9.

[3]

YANG Yuanxi, GUO Hairong, HE Haibo, et al. Principle of satellite navigation and positioning[M]. Beijing: National Defense Industry Press, 2021.

[4]

XU Tianhe, YANG Yuanxi. Recoverying the gravitational potential model from the ephemerides and accelermeter of CHAMP[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(2): 95-99.

[5]

SHEN Yunzhong, CHEN Qiujie, XU Houze. Monthly gravity field solution from GRACE range measurements using modified short arc approach[J]. Geodesy and Geodynamics, 2015, 6(4): 261-266.

[6]

CHEN Qiujie, SHEN Yunzhong, ZHANG Xingfu, et al. GRACE data-based high accuracy global static earth's gravity field model[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 396-403. DOI: 10.11947/j.AGCS.2016.20150422.

[7]

LI Kehang, PENG Dongju, HUANG Cheng, et al. GOCE program and its applications[J]. Progress in Astronomy, 2005, 23(1): 29-39.

[8]

ZHONG Bo. Study on determination of the earth's gravity field from satellite gravimetry mission GOCE[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(4): 535.

[9]

LIU Xiaogang. Theory and methods of the Earth's gravity field model recovery from GOCE data[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 315-315.

[10]

LANDERER F W, FLECHTNER F M, SAVE H, et al. Extending the global mass change data record: GRACE follow-on instrument and science data performance[J]. Geophysical Research Letters, 2020, 47(12): e2020GL088306. DOI: 10.1029/2020gl088306.

[11]

BEHZADPOUR S, MAYER-GÜ RR T, KRAUSS S. GRACE follow-on accelerometer data recovery[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(5): e2020JB021297. DOI: 10.1029/2020JB021297.

[12]

PIE N, BETTADPUR S V, TAMISIEA M, et al. Time variable Earth gravity field models from the first spaceborne laser ranging interferometer[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022392.

[13]

YANG Jungang, ZHANG Jie, CUI Wei, et al. Primary analysis of oceanic mesoscale eddies observation abilities by Sentinel-3A SRAL[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 56-62.

[14]
ZHAI Zhenhe. Researches on theories and algorithms of data processing and application in altimetry satellite[D]. Zhengzhou: Information Engineering University, 2015.
[15]

TANG Xinming, XIE Junfeng, ZHANG Guo. Development and status of mapping satellite technology[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(3): 17-24.

[16]

WANG Renxiang. Key photogrammetric progress of TH-1 satellite without ground control point[J]. Science of Surveying and Mapping, 2013, 38(1): 5-7, 43.

[17]

WANG Renxiang, HU Xin, WANG Jianrong. Photogrammetry of mapping satellite-1 without ground control points[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1): 1-5.

[18]

WANG Renxiang, WANG Jianrong, HU Xin. Preliminary location accuracy assessments of 3rd satellite of TH-1[J]. Acta Geodaetica et Cartographica Sinica, 2013, 45(10): 1135-1139. DOI: 10.11947/j.AGCS.2016.20160373.

[19]

WANG Jianrong, WANG Renxiang, HU Xin, et al. The on-orbit calibration of geometric parameters of the Tianhui-1 (TH-1) satellite[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124: 144-151.

[20]

LI Deren. China's first civilian three-line-array stereo mapping satellite: ZY-3[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 317-322.

[21]

TANG Xinming, WANG Hongyan, ZHU Xiaoyong. Technology and applications of surveying and mapping for ZY-3 satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1482-1491. DOI: 10.11947/j.AGCS.2017.20170251.

[22]

TANG Xinming, GAO Xiaoming, CAO Haiyi, et al. The China ZY3-03 mission: Surveying and mapping technology for high-resolution remote sensing satellites[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(3): 8-17.

[23]

TANG Xinming, ZHOU Ping, ZHANG Guo, et al. Verification of ZY-3 satellite imagery geometric accuracy without ground control points[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(10): 2100-2104.

[24]

TANG Xinming, XIE Junfeng, LIU Ren, et al. Overview of the GF-7 laser altimeter system mission[J]. Earth and Space Science, 2020, 7(1): e2019EA000777.

[25]

TANG Xinming, XIE Junfeng, MO Fan, et al. GF-7 dual-beam laser altimeter on-orbit geometric calibration and test verification[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 384-395. DOI: 10.11947/j.AGCS.2021.20200397.

[26]

LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264. DOI: 10.11947/j.AGCS.2020.20200175.

[27]

YANG Yuanxi, YANG Cheng, REN Xia. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1006-1012. DOI: 10.11947/j.AGCS.2021.20210051.

[28]

LI Deren, WANG Mi, JIANG Jie. China's high-resolution optical remote sensing satellites and their mapping applications[J]. Geo-spatial Information Science, 2021, 24(1): 85-94. DOI: 10.1080/10095020.2020.1838957.

Journal of Geodesy and Geoinformation Science
Pages 3-12
Cite this article:
YANG Y, REN X, WANG J. Development of Integrated and Intelligent Geodetic and Photogrammetry Satellites with Corresponding Key Technologies. Journal of Geodesy and Geoinformation Science, 2023, 6(4): 3-12. https://doi.org/10.11947/j.JGGS.2023.0401

328

Views

17

Downloads

0

Crossref

2

Scopus

1

CSCD

Altmetrics

Received: 29 May 2023
Accepted: 27 August 2023
Published: 20 December 2023
© 2023 Journal of Geodesy and Geoinformation Science
Return