AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (18 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Monitoring Surface Deformation Using Distributed Scatterers InSAR

Haocheng LI1Jie DONG2Yi'an WANG2Mingsheng LIAO1
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Show Author Information

Abstract

In the past two decades, extensive and in-depth research has been conducted on Time Series InSAR technology with the advancement of high-performance SAR satellites and the accumulation of big SAR data. The introduction of distributed scatterers in Distributed Scatterers InSAR (DS-InSAR) has significantly expanded the application scenarios of InSAR geodetic measurement by increasing the number of measurement points. This study traces the history of DS-InSAR, presents the definition and characteristics of distributed scatterers, and focuses on exploring the relationships and distinctions among proposed algorithms in two crucial steps: statistically homogeneous pixel selection and phase optimization. Additionally, the latest research progress in this field is tracked and the possible development direction in the future is discussed. Through simulation experiments and two real InSAR case studies, the proposed algorithms are compared and verified, and the advantages of DS-InSAR in deformation measurement practice are demonstrated. This work not only offers insights into current trends and focal points for theoretical research on DS-InSAR but also provides practical cases and guidance for applied research.

References

[1]

FERRETTI A, FUMAGALLI A, NOVALI F, et al. A new algorithm for processing interferometric data-stacks: squeeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3460-3470.

[2]

GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas: differential radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9183-9191.

[3]

MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry[J]. Nature, 1993, 364(6433): 138-142.

[4]

TROUVÉ E, CARAMMA M, MAîTRE H. Fringe detection in noisy complex interferograms[J]. Applied Optics, 1996, 35(20): 3799-3806.

[5]

SANDWELL D T, PRICE E J. Phase gradient approach to stacking interferograms[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30183-30204.

[6]

FERRETTI A, PRATI C, ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.

[7]
XIA Ye, KAUFMANN H, GUO Xiaofang. Differential SAR interferometry using corner reflectors[C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE, 2002.
[8]
WERNER C, WEGMULLER U, STROZZI T, et al. Interferometric point target analysis for deformation mapping[C]//Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium (IEEE Cat No.03CH37477). Toulouse, France: IEEE, 2003.
[9]

HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004, 31(23): L23611.

[10]
KAMPES B M, ADAM N. The STUN algorithm for persistent scatterer interferometry[C]//Proceedings of Fringe 2005 Workshop. Frascati, Italy: CDROM, 2005: 1-14.
[11]

BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.

[12]

ZHANG Lei, DING Xiaoli, LU Zhong. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1): 146-152.

[13]

PERISSIN D, WANG Teng. Repeat-pass SAR interferometry with partially coherent targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 271-280.

[14]

LANARI R, MORA O, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377-1386.

[15]

HOOPER A. A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008, 35(16): L16302.

[16]

FORNARO G, VERDE S, REALE D, et al. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline- -multitemporal interferometric SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2050-2065.

[17]

CAO Ning, LEE H, JUNG H C. A phase-decomposition-based PSInSAR processing method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1074-1090.

[18]

SAMIEI-ESFAHANY S, MARTINS J E, VAN LEIJEN F V, et al. Phase estimation for distributed scatterers in InSAR stacks using integer least squares estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5671-5687.

[19]

DONG Jie, ZHANG Lu, TANG Minggao, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: a case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205: 180-198.

[20]

TANG Panpan, CHEN Fulong, GUO Huadong, et al. Large-area landslides monitoring using advanced multi-temporal InSAR technique over the Giant Panda Habitat, Sichuan, China[J]. Remote Sensing, 2015, 7(7): 8925-8949.

[21]

LIAO Mingsheng, DONG Jie, LI Menghua, et al. Radar remote sensing for potential landslides detection and deformation monitoring[J]. National Remote Sensing Bulletin, 2021, 25(1): 332-341.

[22]

ZHANG Zhengjia, WANG Chao, TANG Yixian, et al. Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 49-55.

[23]

DU Zheyuan, GE Linlin, LI Xiaojing, et al. Subsidence monitoring over the southern Coalfield, Australia using both L-band and C-band SAR time series analysis[J]. Remote Sensing, 2016, 8(7): 543.

[24]

WANG Mingzhou, LI Tao, JIANG Liming. Monitoring reclaimed lands subsidence in Hong Kong with InSAR technique by persistent and distributed scatterers[J]. Natural Hazards, 2016, 82(1): 531-543.

[25]

SUN Qishi, JIANG Liming, JIANG Mi, et al. Monitoring coastal reclamation subsidence in Hong Kong with distributed scatterer interferometry[J]. Remote Sensing, 2018, 10(11): 1738.

[26]

WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. Retrieval of phase history parameters from distributed scatterers in urban areas using very high resolution SAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 89-99.

[27]

SHI Guoqiang, LIN Hui, MA Peifeng. A hybrid method for stability monitoring in low-coherence urban regions using persistent and distributed scatterers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3811-3821.

[28]

LIU Youfeng, FAN Hongdong, WANG Liang, et al. Monitoring of surface deformation in a low coherence area using distributed scatterers InSAR: case study in the Xiaolangdi Basin of the Yellow River, China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 25-39.

[29]

WU Wenqing, LIU Wenkai, HU Jun, et al. Investigating two-dimensional deformations of the head of the Central Route of the South- -North Water Diversion Project in China with TerraSAR-X datasets[J]. Geomatics, Natural Hazards and Risk, 2023, 14(1): 2228457.

[30]

XUE Feiyang, LYU Xiaolei, DOU Fangjia, et al. A review of time-series interferometric SAR techniques: a tutorial for surface deformation analysis[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(1): 22-42.

[31]

LIN Hui, MA Peifeng, WANG Weixi. Urban Infrastructure health monitoring with spaceborne multi-temporal synthetic aperture radar Interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1421-1433. DOI: 10.11947/j.AGCS.2017.20170339.

[32]

LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224.

[33]

PARIZZI A, BRCIC R. Adaptive InSAR stack multilooking exploiting amplitude statistics: a comparison between different techniques and practical results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 441-445.

[34]

CAO Ning, LEE H, JUNG H C. Mathematical framework for phase-triangulation algorithms in distributed-scatterer interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(9): 1838-1842.

[35]

EVEN M, SCHULZ K. InSAR deformation analysis with distributed scatterers: a review complemented by new advances[J]. Remote Sensing, 2018, 10(5): 744.

[36]

REIGBER A, MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142-2152.

[37]

GOODMAN J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1150.

[38]

GOODMAN N R. Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)[J]. The Annals of Mathematical Statistics, 1963, 34(1): 152-177.

[39]

KURUOGLU E E, ZERUBIA J. Modeling SAR images with a generalization of the Rayleigh distribution[J]. IEEE Transactions on Image Processing, 2004, 13(4): 527-533.

[40]

LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028.

[41]

TOUZI R, LOPES A, BRUNIQUEL J, et al. Coherence estimation for SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149.

[42]

ZEBKER H A, VILLASENOR J. Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 950-959.

[43]

LEE J S. Digital image smoothing and the sigma filter[J]. Computer Vision, Graphics, and Image Processing, 1983, 24(2): 255-269.

[44]

LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465.

[45]

LOPES A, TOUZI R, NEZRY E. Adaptive speckle filters and scene heterogeneity[J]. IEEE transactions on Geoscience and Remote Sensing, 1990, 28(6): 992-1000.

[46]

CIUC M, BOLON P, TROUVé E, et al. Adaptive-neighborhood speckle removal in multitemporal synthetic aperture radar images[J]. Applied optics, 2001, 40(32): 5954-5966.

[47]
WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. Optimal estimation of distributed scatterer phase history parameters from meter-resolution SAR data[C]//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE: Vancouver, BC, Canada, 2011.
[48]

GOEL K, ADAM N. A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5454-5468.

[49]

JIANG Mi, DING Xiaoli, LI Zhiwei, et al. InSAR coherence magnitude estimation based on data stack[J]. Chinese Journal of Geophysics, 2013, 56(3): 799-811.

[50]

ZHANG Yunjun, XIE Chou, SHAO Yun, et al. Adaptive spatial filtering of interferometric data stack oriented to distributed scatterers[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, XL-7/W1: 173-178.

[51]

SHAMSHIRI R, NAHAVANDCHI H, MOTAGH M, et al. Efficient ground surface displacement monitoring using Sentinel-1 data: Integrating distributed scatterers identified using two-sample t-test with persistent scatterers[J]. Remote Sensing, 2018, 10(5): 794.

[52]

JIANG Mi, DING Xiaoli, HANSSEN R F, et al. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1213-1224.

[53]

JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR technique for distributed scatterers: a case study over the lost hills oil field, California[J]. Chinese Journal of Geophysics, 2016, 59(10): 3592-3603.

[54]

JIANG Mi, YONG Bin, TIAN Xin, et al. The potential of more accurate InSAR covariance matrix estimation for land cover mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 120-128.

[55]

SCHMITT M, SCHÖNBERGER J L, STILLA U. Adaptive covariance matrix estimation for multi-baseline InSAR data stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6807-6817.

[56]

SONG Huina, SUN Yingfei, WANG R, et al. Statistically homogeneous pixel selection for small SAR data sets based on the similarity test of the covariance matrix[J]. Remote Sensing Letters, 2017, 8(10): 927-936.

[57]

ZHAO Changjun, LI Zhen, TIAN Bangsen, et al. A statistically homogeneous pixel selection approach for adaptive estimation of multitemporal InSAR covariance matrix[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 110: 102792.

[58]

CHEN Siwei, WANG Xuesong, SATO M. PolInSAR complex coherence estimation based on covariance matrix similarity test[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4699-4710.

[59]

WANG Yingjie, DENG Yunkai, FEI Wenbo, et al. Modified statistically homogeneous pixels' selection with multitemporal SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1930-1934.

[60]

JIANG Mi, DING Xiaoli, LI Zhiwei. Hybrid approach for unbiased coherence estimation for multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2459-2473.

[61]

HU Jun, WU Wenqing, GUI Rong, et al. Deep learning-based homogeneous pixel selection for multitemporal SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234518.

[62]

DELEDALLE C A, DENIS L, TUPIN F. NL-InSAR: nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441-1452.

[63]

Lyu Xiaolei, YAZICI B, ZEGHAL M, et al. Joint-scatterer processing for time-series InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7205-7221.

[64]

GUARNIERI A M, TEBALDINI S. On the exploitation of target statistics for SAR interferometry applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(11): 3436-3443.

[65]
FERRETTI A, FUMAGALLI A, NOVALI F, et al. Process for filtering interferograms obtained from SAR images acquired on the same area: 13/259295[P]. [2024-01-02].
[66]

ANSARI H, DE ZAN F, BAMLER R. Efficient phase estimation for interferogram stacks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4109-4125.

[67]

TOUGH J A, BLACKNELL D, QUEGAN S. A statistical description of polarimetric and interferometric synthetic aperture radar data[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1995, 449(1937): 567-589.

[68]

ZEBKER H A, CHEN K. Accurate estimation of correlation in InSAR observations[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 124-127.

[69]

YU Chen, LI Zhenhong, BAI Lin, et al. Successful applications of generic atmospheric correction online service for InSAR to the reduction of atmospheric effects on InSAR observations[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 109-115. DOI: 10.11947/j.JGGS.2021.0113.

[70]
TOUZI R, LOPES A, BRUNIQUEL J, et al. Unbiased estimation of the coherence from multi-look SAR data[C]//Proceedings of 1996 International Geoscience and Remote Sensing Symposium. Lincoln, NE: IEEE, 1996.
[71]

ABDELFATTAH R, NICOLAS J M. Interferometric SAR coherence magnitude estimation using second kind statistics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(7): 1942-1953.

[72]

JIANG Mi, GUARNIERI A M. Distributed scatterer interferometry with the refinement of spatiotemporal coherence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 3977-3987.

[73]

JIANG Mi, DING Xiaoli, LI Zhiwei, et al. InSAR coherence estimation for small data sets and its impact on temporal decorrelation extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6584-6596.

[74]

WANG Yuanyuan, ZHU Xiaoxiang. Robust estimators for multipass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 968-980.

[75]

ZHANG Kui, WANG Hui, SONG Ruiqing, et al. The application of the phase reconstruction on small InSAR datasets[J]. Journal of Remote Sensing, 2017, 21(4): 645-652.

[76]

GUARNIERI A M, TEBALDINI S. Hybrid Cramér- -Rao bounds for crustal displacement field estimators in SAR interferometry[J]. IEEE Signal Processing Letters, 2007, 14(12): 1012-1015.

[77]

GOEL K, ADAM N. High resolution deformation time series estimation for distributed scatterers using TerraSAR-X data[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-7: 29-34.

[78]

ZHANG Bowen, WANG Robert, DENG Yunkai, et al. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 157-173.

[79]

ANSARI H, DE ZAN F, BAMLER R. Sequential estimator: toward efficient InSAR time series analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5637-5652.

[80]

SONG Huina, ZHANG Bowen, WANG Mengyuan, et al. A fast phase optimization approach of distributed scatterer for multitemporal SAR data based on Gauss- -Seidel method[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4013505.

[81]

EPPLER J, RABUS B T. Adapting InSAR phase linking for seasonally snow-covered terrain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4305313.

[82]

ZWIEBACK S, MEYER F J. Repeat-pass interferometric speckle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(8): 6736-6750.

[83]

YAO Shuyi, BALZ T. Fringe estimation in distributed scatterer interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5218015.

Journal of Geodesy and Geoinformation Science
Pages 42-58
Cite this article:
LI H, DONG J, WANG Y, et al. Monitoring Surface Deformation Using Distributed Scatterers InSAR. Journal of Geodesy and Geoinformation Science, 2024, 7(1): 42-58. https://doi.org/10.11947/j.JGGS.2024.0104

159

Views

75

Downloads

0

Crossref

1

Scopus

0

CSCD

Altmetrics

Published: 20 March 2024
© 2024 Journal of Geodesy and Geoinformation Science
Return