AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Publishing Language: Chinese | Open Access

Research progress on the dentin adhesion of Enterococcus faecalis and its influencing factors

Yuan XIE1,2Xingqun CHENG1,3Yuqing LI1Xin XU1,2( )
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Chengdu 610041, China
Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Show Author Information

Abstract

Enterococcus faecalis is the main pathogen causing refractory apical periodontitis (RAP). This bacterium can tolerate harsh environments and trigger periapical immune inflammatory responses that result in persistent infection inside and outside the root canal. Adhesion to the dentin wall of root canals and the subsequent formation of biofilms significantly enhances the drug resistance and anti-erosion ability of Enterococcus faecalis, which is the key factor mediating its pathogenesis. The adhesion of Enterococcus faecalis to dentin involves non-specific adhesion and specific adhesion, and the latter is mediated by adhesion-related virulence factors, mainly including the adhesin of collagen from enterococci (Ace), extracellular surface protein (Esp), gelatinase (GelE), serine protease (SprE), endocarditis and biofilm associated pilus (Ebp) and aggregation substance (AS), which is regulated by multiple two-component systems. The two-component system Fsr can promote the expression of gelE and sprE when the cell population density increases. GelE can further reduce Ace, while the two-component system GrvRS directly downregulates ace expression in response to the serum environment. The two-component systems CroRS and WalRK may also promote and inhibit the expression of various virulence factors, including ace and gelE, thus affecting the adhesion of Enterococcus faecalis. In addition, the mechanochemical preparation and the internal environment of the root canal can also influence the adhesion of Enterococcus faecalis to dentin. Avoiding the introduction of Enterococcus faecalis and using adhesion-interfering medications during root canal treatment can effectively prevent the adhesion of Enterococcus faecalis, and a variety of activated irrigation protocols can also be effective at increasing the clearance of Enterococcus faecalis from the root canal. The design of rational drugs targeting key factors involved in and regulators of the adhesion of Enterococcus faecalis to dentin is expected to provide new ideas and strategies for root canal infection control. The present paper reviews the adhesion of Enterococcus faecalis to dentin and its influencing factors.

CLC number: R78 Document code: A Article ID: 2096-1456(2024)08-0632-08

References

[1]

Cattoir V. The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health[J]. Curr Opin Microbiol, 2022, 65: 73-80. doi: 10.1016/j.mib.2021.10.013.

[2]

Siqueira JF Jr, Rôças IN. Present status and future directions: microbiology of endodontic infections[J]. Int Endod J, 2022, 55(Suppl 3): 512-530. doi: 10.1111/iej.13677.1

[3]

Nair VS, Nayak M, Ramya MK, et al. Detection of adherence of Enterococcus faecalis in infected dentin of extracted human teeth using confocal laser scanning microscope: an In vitro study[J]. J Pharm Bioallied Sci, 2017, 9(Suppl 1): S41-S44. doi: 10.4103/jpbs.JPBS_92_17.

[4]

Pan H, Ren Q. Wake up! resuscitation of viable but nonculturable bacteria: mechanism and potential application[J]. Foods, 2022, 12(1): 82. doi: 10.3390/foods12010082.

[5]

Șchiopu P, Toc DA, Colosi IA, et al. An overview of the factors involved in biofilm production by the Enterococcus genus[J]. Int J Mol Sci, 2023, 24(14): 11577. doi: 10.3390/ijms241411577.

[6]

Prada I, Micó-Muñoz P, Giner-Lluesma T, et al. Influence of microbiology on endodontic failure. Literature review[J]. Med Oral Patol Oral Cir Bucal, 2019, 24(3): e364-e372. doi: 10.4317/medoral.22907.

[7]

Hahn CL, Hanford K. An in vitro model to study the colonization and tubular invasion of Enterococcus faecalis[J]. J Endod, 2021, 47(3): 451-457. doi: 10.1016/j.joen.2020.12.004.

[8]

Tu Y, Deng S, Wang Y, et al. Adhesive ability of different oral pathogens to various dental materials: an in vitro study[J]. Can J Infect Dis Med Microbiol, 2022, 2022: 9595067. doi: 10.1155/2022/9595067.

[9]

Al-Sakati H, Kowollik S, Gabris S, et al. The benefit of culture-independent methods to detect bacteria and fungi in re-infected root filled teeth: a pilot study[J]. Int Endod J, 2021, 54(1): 74-84. doi: 10.1111/iej.13404.

[10]

Francisco PA, Fagundes PIDG, Lemes-Junior JC, et al. Pathogenic potential of Enterococcus faecalis strains isolated from root canals after unsuccessful endodontic treatment[J]. Clin Oral Investig, 2021, 25(9): 5171-5179. doi: 10.1007/s00784-021-03823-w.

[11]

Geraldes C, Tavares L, Gil S, et al. Enterococcus virulence and resistant traits associated with its permanence in the hospital environment[J]. Antibiotics, 2022, 11(7): 857. doi: 10.3390/antibiotics11070857.

[12]

Hubble TS, Hatton JF, Nallapareddy SR, et al. Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin[J]. Oral Microbiol Immunol, 2003, 18(2): 121-126. doi: 10.1034/j.1399-302x.2003.00059.x.

[13]

Zhou Z, Yang Y, He L, et al. Molecular docking reveals Chitosan nanoparticle protection mechanism for dentin against Collagen-binding bacteria[J]. J Mater Sci Mater Med, 2022, 33(5): 43. doi: 10.1007/s10856-022-06665-4.

[14]

Kayaoglu G, Erten H, Ørstavik D. Possible role of the adhesin ace and collagen adherence in conveying resistance to disinfectants on Enterococcus faecalis[J]. Oral Microbiol Immunol, 2008, 23(6): 449-454. doi: 10.1111/j.1399-302X.2008.00446.x.

[15]

Spiegelman L, Bahn-Suh A, MontañoET, et al. Strengthening of enterococcal biofilms by esp[J]. PLoSPathog, 2022, 18(9): e1010829. doi: 10.1371/journal.ppat.1010829.

[16]

Taglialegna A, Matilla-Cuenca L, Dorado-Morales P, et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers[J]. NPJ Biofilms Microbiomes, 2020, 6(1): 15. doi: 10.1038/s41522-020-0125-2.

[17]

Deng Z, Lin B, Liu F, et al. Role of Enterococcus faecalis in refractory apical periodontitis: from pathogenicity to host cell response[J]. J Oral Microbiol, 2023, 15(1): 2184924. doi: 10.1080/20002297.2023.2184924.

[18]

Venkateswaran P, Lakshmanan PM, Muthukrishnan S, et al. Hidden agenda of Enterococcus faecalis lifestyle transition: planktonic to sessile state[J]. Future Microbiol, 2022, 17: 1051-1069. doi: 10.2217/fmb-2021-0212.

[19]

Rana M, Jain V, Kaur P, et al. Assessment of impact of various root canal irrigants on the adherence of the gelatinase-producing and the gelatinase-deficient E. faecalis strains to dentin[J]. J Contemp Dent Pract, 2019, 20(1): 46-50. doi: 10.5005/jp-journals-10024-2474.

[20]

Choo PY, Wang CY, VanNieuwenhze MS, et al. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis[J]. Mol Microbiol, 2023, 119(1): 1-18. doi: 10.1111/mmi.15008.

[21]

Dong J, Zhang L, He H, et al. Prevalence and conservation of ebp genes in Enterococcus faecalis originated from animals[J]. J Appl Microbiol, 2022, 132(4): 3293-3301. doi: 10.1111/jam.15409.

[22]

Yadav J, Das S, Karthikeyan D, et al. Identification of protein drug targets of biofilm formation and quorum sensing in multidrug resistant Enterococcus faecalis[J]. Curr Protein Pept Sci, 2022, 23(4): 248-263. doi: 10.2174/1389203723666220526155644.

[23]

Alhajjar N, Chatterjee A, Spencer BL, et al. Genome-wide mutagenesis identifies factors involved in Enterococcus faecalis vaginal adherence and persistence[J]. Infect Immun, 2020, 88(10): e00270-e00220. doi: 10.1128/IAI.00270-20.

[24]

Sterling AJ, Snelling WJ, Naughton PJ, et al. Competent but complex communication: the phenomena of pheromone-responsive plasmids[J]. PLoS Pathog, 2020, 16(4): e1008310. doi: 10.1371/journal.ppat.1008310.

[25]

Schmitt A, Hirt H, Järvå MA, et al. Enterococcal PrgA extends far outside the cell and provides surface exclusion to protect against unwanted conjugation[J]. J Mol Biol, 2020, 432(20): 5681-5695. doi: 10.1016/j.jmb.2020.08.018.

[26]

Hirt H, Greenwood-Quaintance KE, Barnes AMT, et al. Dynamics of plasmid-mediated niche invasion, immunity to invasion, and pheromone-inducible conjugation in the murine gastrointestinal tract[J]. Nat Commun, 2022, 13(1): 1377. doi: 10.1038/s41467-022-29028-7.

[27]

Järvå MA, Hirt H, Dunny GM, et al. Polymer adhesin domains in gram-positive cell surface proteins[J]. Front Microbiol, 2020, 11: 599899. doi: 10.3389/fmicb.2020.599899.

[28]

Narenji H, Teymournejad O, Rezaee MA, et al. Antisense peptide nucleic acids against ftsZ and efaA genes inhibit growth and biofilm formation of Enterococcus faecalis[J]. Microb Pathog, 2020, 139: 103907. doi: 10.1016/j.micpath.2019.103907.

[29]

Korir ML, Dale JL, Dunny GM. Role of epaQ, a previously uncharacterized Enterococcus faecalis gene, in biofilm development and antimicrobial resistance[J]. J Bacteriol, 2019, 201(18): e00078-e00019. doi: 10.1128/JB.00078-19.

[30]

Ladjouzi R, Duban M, Lucau-Danila A, et al. The absence of PNPase activity in Enterococcus faecalis results in alterations of the bacterial cell-wall but induces high proteolytic and adhesion activities[J]. Gene, 2022, 833: 146610. doi: 10.1016/j.gene.2022.146610.

[31]

Zhang J, Fang R, Peng Q, et al. The regulations of essential WalRK two-component system on Enterococcus faecalis[J]. J Clin Med, 2023, 12(3): 767. doi: 10.3390/jcm12030767.

[32]

Littlewood S, Tattersall H, Hughes CS, et al. The gelatinase biosynthesis-activating pheromone binds and stabilises the FsrB membrane protein in Enterococcus faecalis quorum sensing[J]. FEBS Lett, 2020, 594(3): 553-563. doi: 10.1002/1873-3468.13634.

[33]

Ali IAA, LévesqueCM, Neelakantan P. Fsr quorum sensing system modulates the temporal development of Enterococcus faecalis biofilm matrix[J]. Mol Oral Microbiol, 2022, 37(1): 22-30. doi: 10.1111/omi.12357.

[34]

Suryaletha K, Narendrakumar L, John J, et al. Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants[J]. BMC Microbiol, 2019, 19(1): 146. doi: 10.1186/s12866-019-1527-2.

[35]

Roh JH, Singh KV, La Rosa SL, et al. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF[J]. Infect Immun, 2015, 83(1): 389-395. doi: 10.1128/IAI.02587-14.

[36]

Wang X, Wang S, Yuan L, et al. Influence of adhesion force on croRS gene expression and antibiotic resistance of Enterococcus faecalis[J]. J Biomed Mater Res A, 2024, 112(1): 44-52. doi: 10.1002/jbm.a.37610.

[37]

Wu S, Liu Y, Zhang H, et al. The susceptibility to calcium hydroxide modulated by the essential walR gene reveals the role for Enterococcus faecalis biofilm aggregation[J]. J Endod, 2019, 45(3): 295-301.e2. doi: 10.1016/j.joen.2018.11.011.

[38]

Gholizadeh P, Aghazadeh M, Ghotaslou R, et al. CRISPR-cas system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of Enterococcus faecalis[J]. Virulence, 2020, 11(1): 1257-1267. doi: 10.1080/21505594.2020.1809329.

[39]

Xu J, He J, Shen Y, et al. Influence of endodontic procedure on the adherence of Enterococcus faecalis[J]. J Endod, 2019, 45(7): 943-949. doi: 10.1016/j.joen.2019.04.006.

[40]

Shen XX, Sun Y, Huo LJ, et al. Effect of 17% ethylenediaminetetraacetic acid irrigation on the dentin adhesion of Enterococcus faecalis[J]. West China J Stomatol, 2019, 37(4): 372-377. doi: 10.7518/hxkq.2019.04.006.

[41]

Tartari T, Wichnieski C, Bachmann L, et al. Effect of the combination of several irrigants on dentine surface properties, adsorption of chlorhexidine and adhesion of microorganisms to dentine[J]. Int Endod J, 2018, 51(12): 1420-1433. doi: 10.1111/iej.12960.

[42]

Huang Y, Zhang Y, Liu Q, et al. Evaluation of structural integrity effect on adhesion strength of root dentin with a multi-functional irrigation strategy[J]. Clin Oral Investig, 2023, 27(4): 1465-1472. doi: 10.1007/s00784-022-04765-7.

[43]

La Rosa GRM, Plotino G, Nagendrababu V, et al. Effectiveness of continuous chelation irrigation protocol in endodontics: a scoping review of laboratory studies[J]. Odontology, 2024, 112(1): 1-18. doi: 10.1007/s10266-023-00835-8.

[44]

Titato PCG, Zancan RF, Pedrinha VF, et al. Influence of EDTA and its association with benzalkonium chloride on Enterococcus faecalisadhesion to dentin[J]. Int J Odontostomat, 2020, 14(4): 632-638. doi: 10.4067/s0718-381x2020000400632.

[45]

Bayatipour Z, Sadeghifard N, Ghafourian S, et al. Effect of chlorhexidine (CHX) and hydrogen peroxide (H2O2) on the biofilm formation of Enterococcus faecalis[J]. Clin Lab, 2022, 68(4). doi: 10.7754/Clin.Lab.2021.210458.

[46]

Li Y, Wang Y, Chen X, et al. Antimicrobial peptide GH12 as root canal irrigant inhibits biofilm and virulence of Enterococcus faecalis[J]. Int Endod J, 2020, 53(7): 948-961. doi: 10.1111/iej.13296.

[47]

Xiao B, Zou Z, Bhandari J, et al. Exposure to diode laser (810nm) affects the bacterial adherence and biofilm formation in a E. faecalis biofilm model[J]. Photodiagn Photodyn Ther, 2020, 31: 101772. doi: 10.1016/j.pdpdt.2020.101772.

[48]

Manoil D, Parga A, Hellesen C, et al. Photo-oxidative stress response and virulence traits are co-regulated in E. faecalis after antimicrobial photodynamic therapy[J]. J Photochem Photobiol B Biol, 2022, 234: 112547. doi: 10.1016/j.jphotobiol.2022.112547.

[49]

Ghorbanzadeh R, Assadian H, Chiniforush N, et al. Modulation of virulence in Enterococcus faecalis cells surviving antimicrobial photodynamic inactivation with reduced graphene oxide-curcumin: an ex vivo biofilm model[J]. Photodiagnosis Photodyn Ther, 2020, 29: 101643. doi: 10.1016/j.pdpdt.2019.101643.

[50]

Ran S, Gu S, Wang J, et al. Dentin tubule invasion by Enterococcus faecalis under stress conditions exvivo[J]. Eur J Oral Sci, 2015, 123(5): 362-368. doi: 10.1111/eos.12202.

[51]

Liu Y, Ping Y, Xiong Y, et al. Genotype, biofilm formation ability and specific gene transcripts characteristics of endodontic Enterococcus faecalis under glucose deprivation condition[J]. Arch Oral Biol, 2020, 118: 104877. doi: 10.1016/j.archoralbio.2020.104877.

[52]

George S, Kishen A. Effect of tissue fluids on hydrophobicity and adherence of Enterococcus faecalis to dentin[J]. J Endod, 2007, 33(12): 1421-1425. doi: 10.1016/j.joen.2007.07.035.

[53]

Gaeta C, Marruganti C, Ali IAA, et al. The presence of Enterococcus faecalis in saliva as a risk factor for endodontic infection[J]. Front Cell Infect Microbiol, 2023, 13: 1061645. doi: 10.3389/fcimb.2023.1061645.

[54]

Martini C, Longo F, Castagnola R, et al. Antimicrobial and antibiofilm properties of graphene oxide on Enterococcus faecalis[J]. Antibiotics, 2020, 9(10): 692. doi: 10.3390/antibiotics9100692.

[55]

Barbosa-Ribeiro M, Arruda-Vasconcelos R, Louzada LM, et al. Microbiological analysis of endodontically treated teeth with apical periodontitis before and after endodontic retreatment[J]. Clin Oral Investig, 2021, 25(4): 2017-2027. doi: 10.1007/s00784-020-03510-2.

[56]

Li Q, Zhang Q, Zou X, et al. Evaluation of four final irrigation protocols for cleaning root canal walls[J]. Int J Oral Sci, 2020, 12(1): 29. doi: 10.1038/s41368-020-00091-4.

[57]

Zeng C, Hu P, Egan CP, et al. Bacteria debridement efficacy of two sonic root canal irrigant activation systems[J]. J Dent, 2024, 140: 104770. doi: 10.1016/j.jdent.2023.104770.

[58]

Asnaashari M, Veshveshadi O, Aslani F, et al. Evaluation the antibacterial efficacy of sodium hypochlorite in combination with two different photodynamic therapy protocols against Enterococcus Faecalis in infected root canals: an in-vitro experiment[J]. Photodiagn Photodyn Ther, 2023, 43: 103722. doi: 10.1016/j.pdpdt.2023.103722.

[59]

Swimberghe RCD, Tzourmanas R, De Moor RJG, et al. Explaining the working mechanism of laser-activated irrigation and its action on microbial biofilms: a high-speed imaging study[J]. Int Endod J, 2022, 55(12): 1372-1384. doi:10.1111/iej.13824.

Journal of Prevention and Treatment for Stomatological Diseases
Pages 632-639
Cite this article:
XIE Y, CHENG X, LI Y, et al. Research progress on the dentin adhesion of Enterococcus faecalis and its influencing factors. Journal of Prevention and Treatment for Stomatological Diseases, 2024, 32(8): 632-639. https://doi.org/10.12016/j.issn.2096-1456.2024.08.009

18

Views

0

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 06 November 2023
Revised: 25 March 2024
Published: 20 August 2024
© 2024 by Editorial Department of Journal of Prevention and Treatment for Stomatological Diseases
Return