AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Cellulose-based UVB-shielding Film with High Visible Transparency

Huixin Li1Jin Huang2Jianguo Li1Lihui Chen1Qinghong Zheng1( )
College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fuzhou Province, 350002, China
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fuzhou Province, 350002, China
Show Author Information

Abstract

Cellulose-based Ultraviolet B (UVB)-shielding films were prepared by coating SnO2 film onto regenerated cellulose (RGC) film through a magnetron sputtering method. The dependence of the crystalline quality and optical property of the SnO2 film on the sputtering power was systematically studied. High quality SnO2 film was grown on RGC film at an optimum sputtering power of 150 W. The optical properties of the composite film can be tailored by adjusting the thickness of the SnO2 film. The SnO2/RGC composite film exhibited high visible transparency and excellent UVB-shielding capacity, which can be used for protection against short-wave radiation.

References

[1]

Tu Y, Zhou L, Jin Y Z, Gao C. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J. Mater. Chem. , 2010, 20(8), 1594-1599.

[2]

Santos G N C, Tibayan E B, Castillon G B, Estacio E, Furuya T, Iwamae A, Yamamoto K, Tani M. Tin Oxide-Silver Composite Nanomaterial Coating for UV Protection and Its Bactericidal Effect on Escherichia coli (E. coli). Coatings, 2014, 4(2), 320-328.

[3]

Yarosh D, Alas L G, Yee V, Kibitel J T, Mitchell D, Rosenstein R, Spinowitz A, Citron M. Pyrimidine dimer removal enhanced by DNA repair liposomes reduces the incidence of UV skin cancer in mice. Cancer Res. , 1992, 52 (15), 4227-4231.

[4]

Ito N, Seki S, Ueda F. The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People—A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 2018, 10(7), 817-826.

[5]

Pérez-Sánchez A, Barrajón-Catalán E, Herranz-López M, Micol V. Nutraceuticals for Skin Care: A Comprehensive Review of Human Clinical Studies. Nutrients, 2018, 10(4), 403-424.

[6]

Da Poian G, Liu C, Bernardini R, Rinaldo R, Clifford G D. Atrial fibrillation detection on compressed sensed ECG. Physiol. Meas. , 2017, 38(7), 1405-1425.

[7]

Fan M-M, Liu K-W, Chen X, Zhang Z-Z, Li B-H, Zhao H, Shen D. Realization of cubic ZnMgO photodetectors for UVB applications. J. Mater. Chem. C, 2015, 3(2), 313-317.

[8]

Periyayya U, Muthulingam S, Khan R, Dao V D, Tran V H, Lee I H. Carbon quantum dots decorated leaf-like CuO nanosheets and their improved dispersion for an excellent UV-shielding properties in polymer films. RSC Advances, 2015, 5(88), 71968-71972.

[9]

Zhou H, Wang H, Tian X, Zheng K, Ye X. Preparation of UV-curable transparent poly(urethane acrylate) nanocomposites with excellent UV/IR shielding properties. Composites Science and Technology, 2014, 94, 105-110.

[10]

Subramani N K, Kasargod Nagaraj S, Shivanna S, Siddaramaiah H. Highly Flexible and Visibly Transparent Poly(vinyl alcohol)/Calcium Zincate Nanocomposite Films for UVA Shielding Applications as Assessed by Novel Ultraviolet Photon Induced Fluorescence Quenching. Macromolecules, 2016, 49(7), 2791-2801.

[11]

Liao W, Gu A, Liang G, Li Y. New high performance transparent UV-curable poly(methyl methacrylate) grafted ZnO/silicone-acrylate resin composites with simultaneously improved integrated performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 74-82.

[12]

Zheng Q, Huang J, Li H, Chen L. Preparation of highly visible transparent ZnO/cellophane UV-shielding film by RF magnetron sputtering. Ceram. Int. , 2019, 45(3), 3729-3734.

[13]

Eita M, Wågberg L, Muhammed M. Spin-Assisted Multilayers of Poly(methyl methacrylate) and Zinc Oxide Quantum Dots for Ultraviolet-Blocking Applications. ACS Appl. Mater. Interfaces, 2012, 4(6), 2920-2925.

[14]

Wang C, Sheng X, Xie D, Zhang X, Zhang H. High-performance TiO2/polyacrylate nanocomposites with enhanced thermal and excellent UV-shielding properties. Prog. Org. Coat. , 2016, 101, 597-603.

[15]

Calvo M E, Castro Smirnov J R, Míguez H. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics, 2012, 50(14), 945-956.

[16]

Tabone M D, Cregg J J, Beckman E J, Landis A E. Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environ. Sci. Technol. , 2010, 44(21), 8264-8269.

[17]

Jiang Y, Song Y, Miao M, Cao S, Feng X, Fang J, Shi L. Transparent nanocellulose hybrid films functionalized with ZnO nanostructures for UV-blocking. J. Mater. Chem. C, 2015, 3(26), 6717-6724.

[18]

Jung Y H, Chang T-H, Zhang H, Yao C, Zheng Q, Yang V W, Mi H, Kim M, Cho S J, Park D-W, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. , 2015, DOI: 10.1038/ncomms8170.

[19]

Feng X, Zhao Y, Jiang Y, Miao M. Use of carbon dots to enhance UV-blocking of transparent nanocellulose films. Carbohydr. Polym. , 2017, 161, 253-260.

[20]

Zhang Z, Song F, Zhang M, Chang H, Zhang X, Li X, Zhu X, Lv X, Wang Y, Li K. Cellulose nanopaper with controllable optical haze and high efficiency ultraviolet blocking for flexible optoelectronics. Cellulose, 2019, 26 (4), 2201-2208.

[21]

Zhu H, Xiao Z, Liu D, Li Y, Weadock N J, Fang Z, Huang J, Hu, L. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy & Environmental Science, 2013, 6(7), 2105-2111.

[22]

Fink H P, Weigel P, Purz H J, Ganster J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. , 2001, 26(9), 1473-1524.

[23]

Kabir M M, Niklasson C, Taherzadeh M J, Horváth I S. Biogas production from lignocelluloses by N-methylmorpholine-N-oxide (NMMO) pretreatment: Effects of recovery and reuse of NMMO. Bioresour. Technol. , 2014, 161, 446-450.

[24]

Kuo C-H, Lee C-K. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment. Bioresour. Technol. , 2009, 100(2), 866-871.

[25]

Ruzene D S, Silva D P, Vicente A A, Teixeira J A, Amorim M T P D, Gonçalves A R. Cellulosic Films Obtained from the Treatment of Sugarcane Bagasse Fibers with N-methylmorpholine-N-oxide (NMMO). Appl. Biochem. Biotechnol. , 2009, 154(1-3), 38-47.

[26]

Gao Q, Shen X, Lu X. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr. Polym. , 2011, 83(3), 1253-1256.

[27]

Song P K, Irie Y, Sato Y, Shigesato Y. Crystal Structure and Photocatalytic Activity of TiO2 Films Deposited by Reactive Sputtering Using Ne, Ar, Kr, or Xe Gases. Jpn. J. Appl. Phys. , 2004, 43(3A), L358-L361.

[28]

Sawai Y, Hazu K, Chichibu S F. Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method. J. Appl. Phys. , 2010, 108(6), 1-8.

[29]

Tay R Y, Griep M H, Mallick G, Tsang S H, Singh R S, Tumlin T, Teo E H, Karna S P. Growth of Large Single-Crystalline Two-Dimensional Boron Nitride Hexagons on Electropolished Copper. Nano Lett. , 2014, 14(2), 839-846.

[30]

Wang Q, Du H, Fang Z, Zhang Y, Wu M, Yu G, Liu C, Li B, Peng H. Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk via a sustainable method. Journal of Materials Chemistry A, 2018, 6(27), 13021-13030.

[31]

Sadeghifar H, Venditti R, Jur J, Gorga R E, Pawlak J J. Cellulose-Lignin Biodegradable and Flexible UV Protection Film. ACS Sustainable Chemistry & Engineering, 2016, 5(1), 625-631.

[32]

Xue B, Zhang Z, Sun Y, Wang J, Jiang H, Du M, Chi C, Li X. Near-infrared emissive lanthanide hybridized nanofibrillated cellulose nanopaper as ultraviolet filter. Carbohydr. Polym. , 2018, 186, 176-183.

[33]

Turkes P, Pluntke C, Helbig R. Thermal conductivity of SnO2 single crystals. Journal of Physics C: Solid State Physics, 1980, 13(26), 4941-4951.

[34]

Yu J, Tang Z, Wei G, Chan P C. Measurement of heat capacity of SnO2 thin films using micro-hotplate. SPIE, 2001, DOI: 10.1117/12.444709.

[35]

Diaz J A, Ye Z, Wu X, Moore A L, Moon R J, Martini A, Boday D J, Youngblood J P. Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films. Biomacromolecules, 2014, 15(11), 4096-4101.

[36]

Uetani K, Okada T, Oyama H T. In-Plane Anisotropic Thermally Conductive Nanopapers by Drawing Bacterial Cellulose Hydrogels. ACS Macro Letters, 2017, 6(4), 345-349.

[37]

Cullen R T, Searl A, Miller B G, Davis J M G, Jones A D. Pulmonary and intraperitoneal inflammation induced by cellulose fibres. J. Appl. Toxicol. , 2000, 20(1), 49-60.

Paper and Biomaterials
Pages 33-42
Cite this article:
Li H, Huang J, Li J, et al. Cellulose-based UVB-shielding Film with High Visible Transparency. Paper and Biomaterials, 2020, 5(1): 33-42. https://doi.org/10.12103/j.issn.2096-2355.2020.01.004

495

Views

19

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 05 October 2019
Accepted: 14 November 2019
Published: 15 January 2020
© 2020 Paper and Biomaterials

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return