AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Preparation and Properties of Cellulose Nanomaterials

Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, Grenoble, F- 38000, France
Show Author Information

Abstract

Cellulose is the most abundant biomass material in nature and it is mainly extracted from natural or lignocellulosic fibers. After purification, cellulose fibers exhibit two interesting features for their further transformation into nanomaterials: a hierarchical and multi-level strcture, and a semicrystalline microstructure. Different forms of cellulose nanomaterials, resulting from a top-down deconstructing strategy (cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs)) or bottom-up strategy (bacterial cellulose (BC)) can be prepared. Multiple mechanical shearing actions applied to cellulosic fibers release more or less the nanofibrils individually. A controlled strong acid hydrolysis treatment can be applied to cellulosic fibers allowing dissolution of non-crystalline domains. Such cellulose nanomaterials have been the focus of an exponentially increasing number of works or reviews devoted to understand such materials and their applications. They have a high potential for an emerging industry. In the nanoscale, cellulose exhibits specific properties broadening the applications of this naturally occurring polymer. An overview of existing methods for the preparation of cellulose nanomaterials and their specific properties that outperform and contrast with cellulose in the microscale is proposed.

References

[1]

Lin N, Dufresne A. Nanocellulose in biomedicine: current status and future prospect. European Polymer Journal, 2014, 59, 302-325.

[2]

Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin S Y, Sheltami R M. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose, 2012, 19, 855-866.

[3]

Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson P T, Ikkala O, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 2007, 8, 1934-1941.

[4]
Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. 2nd edition. Berlin/Boston: Walter de Gruyter GmbH & Co KG, 2017.
[5]

Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Microfibrillated cellulose: morphology and accessibility. Journal of Applied Polymer Science Polymer Symposium, 1983, 37, 797-813.

[6]

Turbak A F, Snyder F W, Sandberg K R. Microfibrillated cellulose: a new cellulose product: properties, uses, and commercial potential. Journal of Applied Polymer Science Polymer Symposium, 1983, 37, 815-827.

[7]

Lavoine N, Desloges I, Dufresne A, Bras J. Microfibrillated cellulose—Its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymers, 2012, 90, 735-764.

[8]

Malainine M E, Dufresne A, Dupeyre D, Mahrouz M, Vuong R, Vignon M R. Structure and morphology of cladodes and spines of Opuntia Ficus-Indica. Cellulose extraction and characterization. Carbohydrate Polymers, 2003, 51, 77-83.

[9]

Nickerson R F, Habrle J A. Cellulose intercrystalline structure. Industrial & Engineering Chemistry, 1947, 39, 1507-1512.

[10]

Dufresne A, Habibi Y, Goffin A L, Schiltz N, Duquesne E, Dubois P. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring opening polymerization. Journal of Materials Chemistry, 2008, 18, 5002-5010.

[11]

Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chemistry, 2009, 11, 1808-1814.

[12]

Hirota M, Tamura N, Saito T, Isogai A. Water dispersion of cellulose Ⅱ nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose, 2010, 17, 279-288.

[13]
Kontturi E. Process for preparing micro- and nanocrystalline cellulose: US Patent, WO 2011/114005.2011-09-22.
[14]

Man Z, Muhammad N, Sarwono A, Bustam M A, Kumar M V, Raflq S. Preparation of cellulose nanocrystals using an ionic liquid. Journal of Polymers and the Environment, 2011, 19, 726-731.

[15]

Leung A C W, Hrapovic S, Lam E, Liu Y, Male K B, Mahmoud K A. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 2011, 7, 302-305.

[16]

Yang H, Alam M D N, van de Ven T G M. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose, 2013, 20, 1865-1875.

[17]

Lu Q, Tang L, Lin F, Wang S, Chen Y, Chen X R. Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose, 2014, 21, 3497-3506.

[18]

Novo L P, Bras J, García A, Belgacem N, Curvelo A A S. Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustainable Chemistry & Engineering, 2015, 3, 2839-2846.

[19]

Kunaver M, Anžlovar A, Žagar E. The fast and effective isolation of nanocellulose from selected cellulosic feedstocks. Carbohydrate Polymers, 2016, 148, 251-258.

[20]

Sirviö J A, Visanko M, Liimatainen H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystals production. Biomacromolecules, 2016, 17, 3025-3032.

[21]

Siqueira G, Abdillahi H, Bras J, Dufresne A. High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose, 2010, 17, 289-298.

[22]

Dufresne A. Cellulose nanomaterial reinforced polymer nanocomposites. Current Opinion in Colloid & Interface Science, 2017, 29, 1-8.

[23]

Dufresne A. Nanocellulose: A new ageless bionanomaterial. Materials Today, 2013, 16, 220-227.

[24]

Favier V, Canova G R, Cavaillé J Y, Chanzy H, Dufresne A, Gauthier C. Nanocomposites materials from latex and cellulose whiskers. Polymers for Advanced Technologies, 1995, 6, 351-355.

[25]

Bettaieb F, Khiari R, Dufresne A, Mhenni F, Belgacem N. Mechanical and thermal properties of Posidonia oceanica cellulose nanocrystal reinforced polymer. Carbohydrate Polymers, 2015, 123, 99-104.

[26]

Lin N, Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale, 2014, 6, 5384-5393.

[27]

Vanderfleet O M, Reid M S, Bras J, Heux L, Godoy-Vargas J, Panga M K R. Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends. Cellulose, 2019, 26, 507-528.

[28]
Sheltami R M, Kargarzadeh H, Abdullah I, Ahmad I. Thermal properties of cellulose nanocomposites. In Handbook of Nanocellulose and Cellulose Nanocomposites (Vol. 1). Eds. Kargarzadeh H, Ahmad I, Thomas S, Dufresne A. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2017, 523-552.
[29]

Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H. Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydrate Polymers, 2014, 99, 74-83.

[30]

Bercea M, Navard P. Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules, 2000, 33, 6011-6016.

[31]

Wang P X, MacLachlan M J. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries. Philosophical Transactions of the Royal Society A, 2018, 376, 20170042.

[32]
Börjesson M, Westman G. Crystalline nanocellulose—Preparation, modification, and properties. In Cellulose: Fundamental Aspects and Current Trends. Ed. Poletto M. New York: IntechOpen, 2015, 159-191.
[33]

Wang J, Gardner D J, Stark N M, Bousfield D W, Tajvidi M, Cai Z. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustainable Chemistry & Engineering, 2018, 6, 49-70.

[34]

Lin N, Huang J, Dufresne A. Preparations, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: A review. Nanoscale, 2012, 4, 3274-3294.

[35]

Hu F, Lin N, Chang P R, Huang J. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydrate Polymers, 2015, 129, 208-215.

Paper and Biomaterials
Pages 1-13
Cite this article:
Dufresne A. Preparation and Properties of Cellulose Nanomaterials. Paper and Biomaterials, 2020, 5(3): 1-13. https://doi.org/10.12103/j.issn.2096-2355.2020.03.001

1067

Views

148

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 17 February 2020
Accepted: 11 March 2020
Published: 15 July 2020
© 2020 Paper and Biomaterials

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return