AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Preparation of Chitosan-based Microspheres for Rapid Hemostasis

Yan Fang( )Peiyuan LiWeikang Zhou
Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian Province, 350007, China
Show Author Information

Abstract

Rapid control of heavy hemorrhaging is critical to save the life of injured individuals. Herein, we developed a novel hemostat employing chitosan-based microspheres, which was prepared by sequential microemulsion of chitosan solution, sol-gel phase transition, and surface modification by 3, 4-dihydroxyhydrocinnamic acid (HCA). HCA-modified chitosan microspheres (CSMS-HCA) displayed a porous structure, with a high specific surface area (~211.3 m2/g), accelerating their rapid absorption of blood and concentrating red cells and platelets. The CSMS-HCA exhibited much better in vitro and in vivo hemostatic efficacy than porous chitosan microspheres did. Such a rapid hemostat in the form of microspheres is highly effective in treating deep and irregular wounds, owing to easy accessibility to injured sites.

References

[1]

Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, Neve A L, Feng Y, Chen H, Shi C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci., 2017(5), 2357-2368.

[2]

Behrens A M, Sikorski M J, Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A, 2014(102), 4182-4194.

[3]

Kragh J F, Walters T J, Baer D G, Fox C J, Wade C E, Salinas J, Holcomb J B. Survival with emergency tourniquet use to stop bleeding in major limb trauma. Ann. Surg. , 2009, 249(1), 1-7.

[4]

Cenni E, Ciapetti G, Stea S, Corradini A, Carozzi F. Biocompatibility and performance in vitro of a hemostatic gelatin sponge. J. Biomater. Sci. Polym. E, 2000, 11(7), 685-699.

[5]

Frantz V K, Clarke H T, Lattes R. Hemostasis with absorbable gauze (oxidized cellulose). Ann. Surg., 1944 (120), 181-189.

[6]

Ibrahim M, El-Mikkawy A, Abdalla H, Mostafa I, Devière J. Management of acute variceal bleeding using hemostatic powder. United Eur. Gastroent., 2015, 3(3), 277-283.

[7]

Trabattoni D, Gatto P, Bartorelli A L. A new kaolin-based hemostatic bandage use after coronary diagnostic and interventional procedures. Int. J. Cardiol. , 2012(156), 53-54.

[8]

Devlin J J, Kircher S, Kozen B G, Littlejohn L F, Johnson A S. Comparison of ChitoFlex®, CELOXTM, and QuikClot® in control of hemorrhage. J. Emerg. Med. , 2011(41), 237-245.

[9]

Zhao Y F, Zhao J Y, Hu W Z, Ma K, Chao Y, Sun P J, Fu X B, Zhang H. Synthetic poly(vinyl alcohol)-chitosan as a new type of highly efficient hemostatic sponge with blood-triggered swelling and high biocompatibility. J. Mater. Chem. B, 2019(7), 1855-1866.

[10]

Rinaudo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.

[11]

Shi X, Fang Q, Ding M, Wu J, Ye F, Lv Z, Jin J. Microspheres of carboxymethyl chitosan, sodium alginate and collagen for a novel hemostatic in vitro study. J. Biomater. Appl. , 2016, 30(7), 1092-1102.

[12]

Chou T-C, Fu E, Wu C-J, Yeh J-H. Chitosan enhances platelet adhesion and aggregation. Biochem. Biophys. Res. Commun., 2003, 302(3), 480-483.

[13]

Shen E, Chou T, Gau C, Tu H, Chen Y, Fu E. Releasing growth factors from activated human platelets after chitosan stimulation: a possible bio-material for platelet-rich plasma preparation. Clin. Oral Implants Res., 2006, 17 (5), 572-578.

[14]

Wei W, Petrone L, Tan Y, Cai H, Israelachvili J N, Miserez A, Waite J H. An Underwater Surface-Drying Peptide Inspired by a Mussel Adhesive Protein. Adv. Funct. Mater., 2016(26), 3496-3507.

[15]

Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater., 2016(15), 407-412.

[16]

Hofman A H, van Hees I A, Yang J, Kamperman M. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox. Adv. Mater., 2018, DOI: 10.1002/adma.201704640.

[17]

Waite J H, Tanzer M L. Polyphenolic substance of Mytilus edulis: novel adhesive containing L-DOPA and hydroxyproline. Science, 1981(212), 1038-1040.

[18]

Liu X, Zhang Q, Gao Z, Hou R, Gao G. Bioinspired Adhesive Hydrogel Driven by Adenine and Thymine. ACS Appl. Mater. Interfaces, 2017(9), 17645-17652.

[19]

Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L. Wearable, Healable, and Adhesive Epidermal Sensors Assembled from Mussel-Inspired Conductive Hybrid Hydrogel Framework. Adv. Funct. Mater., 2017 (27), 1703852-1703863.

[20]

Han L, Yan L, Wang K, Fang L, Zhang H, Tang Y, Ding Y, Weng L, Xu J, Weng J. Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater., 2017(9), e372-e384.

Paper and Biomaterials
Pages 41-49
Cite this article:
Fang Y, Li P, Zhou W. Preparation of Chitosan-based Microspheres for Rapid Hemostasis. Paper and Biomaterials, 2021, 6(1): 41-49. https://doi.org/10.12103/j.issn.2096-2355.2021.01.005

606

Views

21

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 17 November 2020
Accepted: 16 December 2020
Published: 25 January 2021
© 2021 Paper and Biomaterials

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return