AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Improving Electrochemical Performance of Cellulose Fiber-based Supercapacitor Electrode Using Polypyrrole-wrapped Iron Oxyhydroxide

Youngchu KangHailan JinXianhui AnXueren Qian( )
Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University) Ministry of Education, Harbin, Heilongjiang Province, 150040, China
Show Author Information

Abstract

Polypyrrole (PPy)@cellulose fiber-based composites have been widely investigated as electrode materials for use in flexible supercapacitors. However, they cannot readily provide high specific capacitance and cyclic stability owing to their inherent drawbacks, such as high resistance, Weber impedance, and volume expansion or collapse during charging/discharging. In this study, iron oxyhydroxide (FeOOH) is incorporated in the abovementioned composite to decrease the equivalent series resistance, charge transfer resistance, and Weber impedance, thereby enhancing electron transfer and ion diffusion, which results in superior electrochemical performance. The PPy-wrapped FeOOH@cellulose fiber-based composite electrode with the molar ratio of FeSO4 to NaBH4 of 1∶1 exhibits a high specific capacitance of 513.8 F/g at a current density of 0.2 A/g, as well as an excellent capacitance retention of 89.4% after 1000 cycles.

References

[1]

Cheng Y W, Zhang H B, Lu S T, Varanasi C V, Liu J. Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. Nanoscale, 2018, 5, 1067-1073.

[2]

Bao L H, Zang J F, Li X D. Flexible Zn2SnO4/MnO2 core/shell nanocable carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Letters, 2011, 11, 1215-1220.

[3]

Ju H F, Song W L, Fan L Z. Rational design of graphene/porous carbon aerogels for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2014, 2, 10895-10903.

[4]

Chen Y X, Cai K F, Liu C C, Song H J, Yang X W. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors. Advanced Energy Materials, 2017, DOI: 10.1002/aenm.201701247.

[5]

Wang Z, Du J G, Zhang M, Yu J L, Liu H C, Chai X Y, Yang B, Zhu C Z, Xu J. Continuous preparation of high performance flexible asymmetric supercapacitor with a very fast, low-cost, simple and scalable electrochemical codeposition method. Journal of Power Sources, 2019, DOI: 10.1016/j.jpowsour.2019.226827.

[6]

Sun D M, Liu Q Z, Yi C, Chen J H, Wang D, Wang Y D, Liu X, Li M F, Liu K, Zhou P C, et al. The construction of sea urchin spines-like polypyrrole arrays on cotton-based fabric electrode via a facile electropolymerization for high performance flexible solid-state supercapacitors. Electrochimica Acta, 2020, DOI: 10.1016/j.electacta.2020.136746.

[7]

Zou S, Liu X B, Xiao Z C, Xie P, Liu K X, Lv C, Yin, Y H, Li Y S, Wu Z P. Engineering the interface for promoting ionic/electronic transmission of organic flexible supercapacitors with high volumetric energy density. Journal of Power Sources, 2020, DOI: 10.1016/j.jpowsour.2020.228097.

[8]

Li Y, Lu Z, Xin B J, Liu Y, Cui Y H, Hu Y X. All-solid-state flexible supercapacitor of carbonized MXene/cotton fabric for wearable energy storage. Applied Surface Science, 2020, DOI: 10.1016/j.apsusc.2020.146975.

[9]

Xu Z J, Liu Y N, Wu Z T, Wang R T, Wang Q F, Li T, Zhang J H, Cheng J, Yang Z H, Chen S F, et al. Construction of extensible and flexible supercapacitors from covalent organic framework composite membrane electrode. Chemical Engineering Journal, 2020, DOI: 10.1016/j.cej.2020.124071.

[10]

Chu M Z, Zhai Y Y, Shang N Z, Guo P J, Wang C, Gao Y J. N-doped carbon derived from the monomer of chitin for high-performance supercapacitor. Applied Surface Science, 2020, DOI: 10.1016/j.apsusc.2020.146140.

[11]

Zhao G Q, Tang Y L, Wan G P, Xu X F, Zhou X C, Zhou M F, Hao C C, Deng S J, Wang G Z. High-performance and flexible all-solid-state hybrid supercapacitor constructed by NiCoP/CNT and N-doped carbon coated CNT nanoarrays. Journal of Colloid Interface Science, 2020, 572, 151-159.

[12]

Wang K B, Yi X R, Luo X F, Shi Y, Xu J Y. Fabrication of Co3O4 pseudocapacitor electrodes from nanoscale cobal-torganic frameworks. Polyhedron, 2016, 109, 26-32.

[13]

Chen S J, Cai D P, Yang X H, Chen Q D, Zhan H B, Qu B H, Wang T H. Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in-situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries. Electrochimica Acta, 2017, 256, 63-72.

[14]

Guo S H, Chen W Q, Li M, Wang J, Liu F, Cheng J P. Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors. Electrochimica Acta, 2018, 271, 498-506.

[15]

Wang X L, Dong L B, Liu W B, Huang Y F, Pu X C, Wang J J, Kang F Y, Li J, Xu C J. Few-layer Ti3C2Tx MXene delaminated via flash freezing for high-rate electrochemical capacitive energy storage. Journal of Energy Chemistry, 2020, 48, 233-240.

[16]

Fu X D, Li T, Qi F L, Zhang S, Wen J X, Shu W L, Luo P, Zhang R, Hu S F, Liu Q T. Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Applied Surface Science, 2020, DOI: 10.1016/j.apsusc.2019.145135.

[17]

He T Q, Zhang W L, Manasa P, Ran F. Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor. Journal of Alloys and Compounds, 2020, DOI: 10.1016/j.jallcom.2019.152138.

[18]

Tian J, Peng D F, Wu X, Li W, Deng H B, Liu S L. Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storag. Carbohydrate Polymers, 2017, 156, 19-25.

[19]

Zhang X F, Li H, Zhang W, Huang Z J, Tsui C P, Lu C H, He C G, Yang Y K. In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochimica Acta, 2019, 301, 55-62.

[20]

Zhuo H, Hu Y J, Chen Z H, Zhong L X. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydrate Polymers, 2019, 215, 322-329.

[21]

Peng S, Fan L L, Rao W D, Bai Z K, Xu W L, Xu J. Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes. Journal of Materials Science, 2017, 52, 1930-1942.

[22]

Zhu J B, Xu Y L, Wang J, Wang J P, Bai Y, Du X F. Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor. Physical Chemistry Chemical Physics, 2015, 17, 19885-19894.

[23]

Wang H, Song Y H, Zhou J K, Xu Y X, Hong W, Yan J, Xue R N, Zhao H L, Liu Y, Gao J P. High-performance supercapacitor materials based on polypyrrole composites embedded with core-sheath polypyrrole@MnMoO4 nanorods. Electrochimica Acta, 2016, 212, 775-783.

[24]

Chen Q, Wang X Q, Chen F, Zhang N, Ma M M. Extremely strong and tough polythiophene composite for flexible electronics. Chemical Engineering Journal, 2019, 368, 933-940.

[25]

Alabadi A, Razzaque S, Dong Z H, Wang W X, Tan B E. Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. Journal of Power Sources, 2016, 306, 241-247.

[26]

Lay M, Àngels Pèlach M, Pellicer N, Tarrés J A, Bun K N, Vilaseca F. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT: PSS/polypyrrole for energy storage devices. Carbohydrate Polymers, 2017, 165, 86-95.

[27]

Kumar N, Ginting R T, Kang J W. Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT: PSS/reduced-graphene oxide. Electrochimica Acta, 2018, 270, 37-47.

[28]

Chen J Z, Xu J L, Zhou S, Zhao N, Wong C P. Amorphous nanostructured FeOOH and Co-Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy, 2016, 21, 145-153.

[29]

Guan D H, Gao Z, Yang W L, Wang J, Yuan Y, Wang B, Zhang M L, Liu L H. Hydrothermal synthesis of carbon nanotube/cubic Fe3O4 nanocomposite for enhanced performance supercapacitor electrode material. Materials Science and Engineering: B, 2013, 178, 736-743.

[30]

Lu X H, Zeng Y X, Yu M H, Zhai T, Liang C L, Xie S L, Balogun M S, Tong Y X. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Advanced Materials, 2014, 26, 3148-3155.

[31]

Lee K K, Deng S, Fan H M, Mhaisalkar S, Tan H R, Tok E S, Loh K P, Chin W S, Sow C H. α-Fe2O3 nanotubes-reduced graphene oxide composites as synergistic electrochemical capacitor materials. Nanoscale, 2012, 4, 2958-2961.

[32]

Qi T, Jiang J J, Chen H C, Wan H Z, Miao L, Zhang L. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochimica Acta, 2013, 114, 674-680.

[33]

Xiao T T, Yang C L, Lu Y G, Zeng F L. One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. Journal of Materials Science: Materials in Electronics, 2014, 25, 3364-3374.

[34]

Yan J, Wang Q, Wei T, Fan Z J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014, DOI: 10.1002/aenm.201300816.

[35]

Chen Y H, Zhou J F, Maguire P, O'Connell R, Schmitt W, Li Y H, Yan Z G, Zhang Y F, Zhang H Z. Enhancing capacitance behaviour of CoOOH nanostructures using transition metal dopants by ambient oxidation. Scientific Reports, 2016, DOI, 10.1038/srep20704.

[36]

Wu L Y, Liu Y H, Zhang L S, Zhao L J. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co(OH)2 nanocomposite exhibiting a high removal ability for organic dye. Dalton Transactions, 2014, 43, 5393-5400.

[37]

Chen Y C, Lin Y G, Hsu Y K, Yen S C, Chen K H, Chen L C. Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small, 2014, 10, 3803-3810.

[38]

Yu Q, Meng X G, Wang T, Li P, Ye J H. Hematite films decorated with nanostructured ferric oxyhydroxide as photoanodes for efficient and stable photoelectrochemical water splitting. Advanced Functional Materials, 2015, 25, 2686-2692.

[39]

Chemelewski W D, Lee H C, Lin J F, Bard A J C. Mullins B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of the American Chemical Society, 2014, 136, 2843-2850.

[40]

Peng S, Fan L L, Wei C Z, Liu X H, Zhang H W, Xu W L, Xu J. Flexible polypyrrole/copper sulfide/bacterial cellulose nanofibrous composite membranes as supercapacitor electrodes. Carbohydrate Polymers, 2017, 157, 344-352.

[41]

Cherusseri J, Kar K K. Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors. Physical Chemistry Chemical Physics, 2016, 18, 8587-8597.

[42]

Yuan L Y, Yao B, Hu B, Huo K F, Chen W, Zhou J. Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 2013, 6, 470-476.

[43]

Wang Z H, Xiong X Q, Qie L, Wang Y H. High-performance lithium storage in nitrogen-enriched carbon nanofiber webs derived from polypyrrole. Electrochimica Acta, 2013, 106, 320-326.

[44]

Hebeish A, Farag S, Sharaf S, Shaheen T I. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites. Carbohydrate Polymers, 2016, 151, 96-102.

[45]

Lay M, González I, Tarrés J A, Pellicer N, Bun K N, Vilaseca F. High electrical and electrochemical properties in bacterial cellulose/polypyrrole membranes. European Polymer Journal, 2017, 91, 1-9.

[46]

Luo H l, Dong J J, Zhang Y, Li G, Guo R S, Zuo G F, Ye M D, Wang Z R, Yang Z W, Wan Y Z. Constructing 3D bacterial cellulose/graphene/polyaniline nanocomposites by novel layer-by-layer in situ culture toward mechanically robust and highly flexible freestanding electrodes for supercapacitors. Chemical Engineering Journal, 2018, 334, 1148-1158.

[47]

Xu C P, Puente Santiago A R, Rodríguez-Padrón D, Caballero A, Balu A M, Romero A A, Muñoz-Batista M J, Luque R. Controllable design of polypyrrole-iron oxide nanocoral architectures for supercapacitors with ultrahigh cycling stability. ACS Applied Energy Materials, 2019, 2, 216-2168.

[48]

Wang B, Han W Y, Tan Y S, Gu P, Yin Y J, Wang C X. Constructing β-FeOOH scaffold for enhancing conductance and capacitances of coaxial polypyrrole/nylon fibers. Electrochimica Acta, 2020, DOI: 10.1016/j.electacta.2020.136407.

[49]

Chen R, Puri I K, Zhitomirsky I. Polypyrrole-carbon nanotube-FeOOH composites for negative electrodes of asymmetric supercapacitors. Journal of Electrochemical Society, 2019, 166, A935-A940.

[50]

Gong X F, Li S H, Lee P S. Fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as anode electrode with high volumetric energy density for wearable applications. Nanoscale, 2017, 9, 10794-10801.

[51]

Li K L, Feng S H, Jing C, Chen Y X, Liu X Y, Zhang Y X, Zhou L. Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chemical Communications, 2019, 55, 13773-13776.

Paper and Biomaterials
Pages 10-19
Cite this article:
Kang Y, Jin H, An X, et al. Improving Electrochemical Performance of Cellulose Fiber-based Supercapacitor Electrode Using Polypyrrole-wrapped Iron Oxyhydroxide. Paper and Biomaterials, 2021, 6(3): 10-19. https://doi.org/10.1213/j.issn.2096-2355.2021.03.002

723

Views

19

Downloads

0

Crossref

1

Scopus

Altmetrics

Received: 30 April 2021
Accepted: 16 June 2021
Published: 25 July 2021
© 2021 Paper and Biomaterials

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return