AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Preparation and Application of Chitosan-based Polyelectrolyte Complex Materials: An Overview

Yukai LinXinyue WangQinghai LiuYan Fang( )
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian Province, 350007, China

These authors contributed equally to this work.

Show Author Information

Abstract

Chitosan, a renewable, non-toxic, and natural cationic polyelectrolyte, can be combined with many anionic polyelectrolytes (such as sodium alginate, hyaluronic acid, xylan, and gelatin) via electrostatic forces to form chitosan-based polyelectrolyte composites under certain conditions. This review summarizes various methods of preparing chitosan-based polyelectrolyte composites and analyzes their applications in clinical medicine and agriculture, as well as pharmaceutical, tissue, food, environmental, and textile engineering fields. The future development direction and potential of chitosan-based polyelectrolytes are also discussed.

References

[1]

Islam S, Bhuiyan M, Islam M N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. Journal of Polymers and the Environment, 2017, 25, 854-866.

[2]

Wang X, Liu Y, Zheng J. Removal of As(III) and As(V) from water by chitosan and chitosan derivatives: a review. Environmental Science and Pollution Research, 2016, 23, 13789-13801.

[3]

Synowiecki J, Al-Khat Eeb N A. Production, Properties, and Some New Applications of Chitin and Its Derivatives. Crit Rev Food Sci Nutr, 2003, 43(2), 145-171.

[4]

Crini G, Badot P M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science, 2008, 33(4), 399-447.

[5]

Ngah W, Teong L C, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4), 1446-1456.

[6]

Ashori A, Bahrami R. Modification of Physico-Mechanical Properties of Chitosan-Tapioca Starch Blend Films Using Nano Graphene. Journal of Macromolecular Science: Part D—Reviews in Polymer Processing, 2014, 53(3), 312-318.

[7]

Sahariah P, Másson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules, 2017, 18, 3846-3868.

[8]

Hsu S C, Hsu S H, Chang S W. Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomaterials Science And Engineering, 2020, 6(1), 298-307.

[9]

Kumari S, Hari S, Abanti S, Rath P K. Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International Journal of Biological Macromolecules, 2017, 104(B), 1697-1705.

[10]

Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. International Journal of Molecular Sciences, 2020, 21(2), 487-513.

[11]

Taubner T, Marounek M, Synytsya A. Preparation and characterization of hydrophobic and hydrophilic amidated derivatives of carboxymethyl chitosan and carboxymethyl β-glucan. International Journal of Biological Macromolecules, 2020, 163, 1433-1443.

[12]

Syrine D, Nicolas T, Feng C, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydrate Polymers, 2018, 202, 382-396.

[13]

Andreica B I, Cheng X, Marin L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 2020, DOI: 10.1016/j.eurpolymj.2020.110016.

[14]

Baig M I, Durmaz E N, Willott J D, Vos W M. Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation. Advanced Functional Materials, 2020, DOI: 10.1002/adfm.201907344.

[15]

Thünemann A F, Müller M, Dautzenberg H, Joanny J, LÖwen H. Polyelectrolyte complexes. Advances in Polymer Science, 2004, 16, 113-171.

[16]

Cui Q, Bell D J, Rauer S B, Wessling M. Wet-Spinning of Biocompatible Core-Shell Polyelectrolyte Complex Fibers for Tissue Engineering. Adv Mater Interfaces, 2020, DOI: 10.1002/admi.202000849.

[17]

Kiani M, Tekie F, Dinarvand M, Soleimani M, Dinarvand R, Atyabi F. Thiolated carboxymethyl dextran as a nanocarrier for colon delivery of hSET1 antisense: In vitro stability and efficiency study. Materials Science & Engineering C, 2016, 62, 771-778.

[18]

Ivanov A N, Kuzin Y I, Evtugyn G A. SPR sensor based on polyelectrolyte complexes with DNA inclusion. Sensors and Actuators B: Chemical, 2019, 81, 574-581.

[19]

Srivastava A, Yavvari P S, Awasthi A K, Sharma A, Bajaj A. Emerging biomedical applications of polyaspartic acid-derived biodegradable polyelectrolytes and polyelectrolyte complexes. Mater Chem B, 2019, 7, 2102-2122.

[20]

Kaang B K, Han N, Lee H J, Choi W S. Polyelectrolyte Brush-Grafted Polydopamine-Based Catalysts with Enhanced Catalytic Activity and Stability. ACS Applied Materials & Interfaces, 2018, 10(1), 1113-1124.

[21]

Lai W F, Zhao S, Chiou J. Antibacterial and clusteroluminogenic hypromellose-graft-chitosan-based polyelectrolyte complex films with high functional flexibility for food packaging. Carbohydrate Polymers, 2021, DOI: 10.1016/j.carbpol.2021.118447.

[22]

Gierszewska M, Ostrowska-Czubenko J, Chrzanowska E. pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. European Polymer Journal, 2018, 101, 282-290.

[23]

Akamatsu K, Nakano S, Kimura K, Takashima Y, Tsuruoka T, Nawafune H, Sato Y, Murai J, Yanagimoto H. Controlling Interfacial Ion-Transport Kinetics Using Polyelectrolyte Membranes for Additive- and Effluent-free, High-Performance Electrodeposition. ACS Applied Materials And Interfaces, 2021, 13(11), 13896-13906.

[24]

Shakeri S E, Ghaffarian S R, Tohidian M, Bahlakeh G, Taranejoo S. Polyelectrolyte Nanocomposite Membranes, Based on Chitosan-phosphotungstic Acid Complex and Montmorillonite for Fuel Cells Applications. Journal of Macromolecular Science Part B, 2013, 52(9), 1226-1241.

[25]

Komoto D, Furuike T, Tamura H. Preparation of polyelectrolyte complex gel of sodium alginate with chitosan using basic solution of chitosan. International Journal of Biological Macromolecules, 2019, 126, 54-59.

[26]

Souvik D, Annika O, Monika S, Cornelia C. Ion Conduction and Its Activation in Hydrated Solid Polyelectrolyte Complexes. Polymers, 2017, DOI: 10.3390/polym9110550.

[27]

Sadman K, Wang Q, Chen Y, Keshuvarz B, Jiang Z, Shull K R. Influence of Hydrophobicity on Polyelectrolyte Complexation. Macromolecules, 2017, 50(23), 9417-9426.

[28]

Meka V S, Sing M K G, Pichika M R P, Nali S R, Kesharwani P. A comprehensive review on polyelectrolyte complexes. Drug Discovery Today, 2017, 22(11), 1697-1706.

[29]

Pota J, Szymańska E, Winnicka K. Challenges in developing of chitosan-based polyelectrolyte complexes as a platform for mucosal and skin drug delivery-Science Direct. European Polymer Journal, 2020, DOI: 10.1016/j.eurpolymj.2020.110020.

[30]

Pillai C, Paul W, Sharma C P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 34(7), 641-678.

[31]

Ramos D P, Sarjinsky S, Alizadehgiashi M, Mbus J, Kumacheva E. Polyelectrolyte vs Polyampholyte Behavior of Composite Chitosan/Gelatin Films. ACS Omega, 2019, 4(5), 8795-8803.

[32]

Lalevée G, Sudre G, Montembault A, Meadows J, Malaise S, Crépet A, David L, Delair T. Polyelectrolyte complexes via desalting mixtures of hyaluronic acid and chitosan—Physicochemical study and structural analysis. Carbohydrate Polymers, 2016, 154, 86-95.

[33]

Chen S, Liu M, Jin S, Chen Y. Structure and properties of the polyelectrolyte complex of chitosan with poly(methacrylic acid). Polymer International, 2010, 56(10), 1305-1312.

[34]

Mocchiutti P, Schnell C N, Rossi G D, Peresin M S, Galván M V. Cationic and anionic polyelectrolyte complexes of xylan and chitosan. Interaction with lignocellulosic surfaces. Carbohydrate Polymers, 2016, 150, 89-98.

[35]

Wu D, Zhu L, Li Y, Delair T. Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydrate Polymers, 2020, DOI: 10.1016/j.carbpol.2020.116126.

[36]

Bravo-Anaya L M, Fernández-Solís K G, Rosselgong J, Nano-Rodríguez J L E, Carvajal F, Rinaudo M. Chitosan-DNA polyelectrolyte complex: Influence of chitosan characteristics and mechanism of complex formation. International Journal of Biological Macromolecules, 2019, 126, 1037-1049.

[37]

Sanchez-Ballester N M, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydrate Polymers, 2021, DOI: 10.1016/j.carbpol.2021.118399.

[38]

Nikolova D, Simeonov M, Tzachev C, Apostolov A, Vassileva E. Polyelectrolyte Complexes of Chitosan and Sodium Alginate as Drug Delivery System for Diclofenac Sodium. Polymer International, 2021, DOI: 10.1002/pi.6273.

[39]

Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules, 2016, 17(6), 2160-2167.

[40]

Phoeung T, Spanedda M V, Roger E, Heurtault B, Fournel S, Reisch A, Mutschler A, Perrin-Schmitt F, Hemmerle J, Collin D. Alginate/Chitosan Compact Polyelectrolyte Complexes (CoPEC): A Cell and Bacterial repellent Material. Chemistry of Materials, 2017, 29, 10418-10425.

[41]

Kulig D, Zimoch-Korzycka A, Jarmoluk A, Krzysztof M. Study on Alginate-Chitosan Complex Formed with Different Polymers Ratio. Polymers, 2016, DOI: 10.3390/polym8050167.

[42]

Kulig D, Zimoch-Korzycka A, Król Ż, Oziembłowski M, Jarmoluk A. Effect of Film-Forming Alginate/Chitosan Polyelectrolyte Complex on the Storage Quality of Pork. Molecules, 2017, DOI: 10.3390/molecules22010098.

[43]

Chen P, Xie F, Tang F, McNally T. Unexpected plasticization effects on the structure and properties of polyelectrolyte complexed chitosan/alginate materials. ACS Applied Polymer Materials, 2020, 2(7), 2957-2966.

[44]

Costa M, Prates L M, Leonardo B, Cruz M T M, Ferreira I L M. Interaction of polyelectrolyte complex between sodium alginate and chitosan dimers with a single glyphosate molecule: A DFT and NBO study. Carbohydrate Polymers, 2018, 198, 51-60.

[45]

Carn F, Guyot S, Baron A. Structural Properties of Colloidal Complexes between Condensed Tannins and Polysaccharide Hyaluronan. Biomacromolecules, 2012, 13(3), 751-759.

[46]

Grandoch M, Bollyky P L, Fischer J W. Hyaluronan. Circulation Research, 2018, 122(10), 1341-1343.

[47]

Raik S V, Gasilova E R, Dubashynskaya N V, Dobrodumov A V, Skorik Y A. Diethylaminoethyl chitosan-hyaluronic acid polyelectrolyte complexes. International Journal of Biological Macromolecules, 2020, 146, 1161-1168.

[48]

Heldin P, Lin C, Kolliopoulos C, Chen Y-H, Skandalis S S. Regulation of hyaluronan biosynthesis and clinical impact of excessive hyaluronan production. Matrix Biology, 2019, 78-79, 100-117.

[49]

Wu D, Ensinas A, Verrier B, Primard C, Cuvillier A, Gaël C, Stephane P, Thierry D. Zinc-stabilized colloidal polyelectrolyte complexes of chitosan/hyaluronan: a tool for the inhibition of HIV-1 infection. J Mater Chem B, 2016, 4(32), 5455-5463.

[50]

Wu J, Wang X, Keum J K, Zhou H, Gelfer M, Avila-Orta C-A, Pan H, Chen W, Chiao S-M, Hsiao B S, et al. Water soluble complexes of chitosan-g-MPEG and hyaluronic acid. Biomed Mater Res, 2007, 80, 800-812.

[51]

Chen L, Zheng Y, Feng L, Liu Z, Guo R, Zhang Y. Novel hyaluronic acid coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of doxorubicin. International Journal of Biological Macromolecules, 2019, 126, 254-261.

[52]

Wu D, Delair T. Stabilization of chitosan/hyaluronan colloidal polyelectrolyte complexes in physiological conditions. Carbohydrate Polymers, 2015, 119, 149-158.

[53]

Dubashynskaya N V, Raik S V, Dubrovskii Y A, Demyanova E V, Shcherbakova E S, Poshina D N, Shasherina A Y, Anufrikov Y A, Skorik Y A. Hyaluronan/Diethylaminoethyl Chitosan Polyelectrolyte Complexes as Carriers for Improved Colistin Delivery. International Journal of Molecular Sciences, 2021, DOI: 10.3390/IJMS22168381.

[54]

Lebeau J, Efromson J P, Lynch M D. A Review of the Biotechnological Production of Methacrylic Acid. Frontiers in Bioengineering and Biotechnology, 2020, DOI: 10.3389/fbioe.2020.00207.

[55]

Hriberek P, Kogej K. Tacticity and Counterion Modulated Temperature Response of Weak Polyelectrolytes: The Case of Poly(methacrylic acid) Stereoisomers in Aqueous Solutions. Macromolecules, 2019, 52(18), 7028-7041.

[56]

Vshivkov S A, Soliman T S, Kluzhin E S, Kapitanov A A. Structure of poly(acrylic acid), poly(methacrylic acid) and gelatin solutions. Journal of Molecular Liquids, 2019, DOI: 10.1016/j.molliq.2019.111551.

[57]

De Vasconcelos C L, Bezerril P M, dos Santos D E S, Dantas T N C, Pereira M R, Fonseca J L C. Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan. Biomacromolecules, 2006, 7(4), 1245-1252.

[58]

Markovic M D, Spasojevic P M, Seslija S I, Popovic I G, Veljovic D N, Pjanovic R V, Panic V V. Casein-poly(methacrylic acid) hybrid soft networks with easy tunable properties. European Polymer Journal, 2019, 113, 276-288.

[59]

Choudhari S K, Premakshi H G, Kariduraganavar M Y. Preparation and Pervaporation Performance of Chitosan-Poly(methacrylic acid) Polyelectrolyte Complex Membranes for Dehydration of 1, 4-Dioxane. Polymer Engineering and Science, 2016, 56, 715-724.

[60]

De Vasconcelos C, Bezerril P M, Dantas T, Pereira M R, Fonseca J L C. Adsorption of bovine serum albumin on template-polymerized chitosan/poly(methacrylic acid) complexes. Langmuir the ACS Journal of Surfaces & Colloids, 2007, 23(14), 7687-7694.

[61]

Silva R, Silva J, Júnior A, Marinho P S B, Costa R M R. Adsorption of Vi Capsular Antigen of Salmonella Typhi in Chitosan-Poly(methacrylic Acid) Nanoparticles. Polymers, 2019, DOI: 10.3390/polym11071226.

[62]

Chen S, Liu M, Jin S, Chen Y. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. Journal of Applied Polymer Science, 2005, 98, 1720-1726.

[63]

Schnell C N, Galván M V, Zanuttini M A, Mocchiutti P. Hydrogels from xylan/chitosan complexes for the controlled release of diclofenac sodium. Cellulose, 2020, 27, 1465-1481.

[64]

Schnell C N, Galván M V, Peresin M S, Inalbon M C, Vartiainen J, Zanuttini M A, Mocchiutti P. Films from xylan/chitosan complexes: preparation and characterization. Cellulose, 2017, 24, 4393-4403.

[65]

Sun X, Feng Y, Shi X, Wang Y. Preparation and Property of Xylan/Poly(methacrylic acid) Semi-interpenetrating Network Hydrogel. International Journal of Polymer Science, 2016 DOI: 10.1155/2016/8241078.

[66]

Fu G, Zhang S, Chen G, Bian J, Peng F. Xylan-based hydrogels for potential skin care application. International Journal of Biological Macromolecules, 2020, 158, 244-250.

[67]

Schnell C N, Galván M V, Solier Y N, Inalbon M C, Zanuttini M A, Mocchiutti P. High strength biobased films prepared from xylan/chitosan polyelectrolyte complexes in the presence of ethanol. Carbohydrate Polymers, 2021, DOI: 10.1016/j.carbpol.2021.118602.

[68]

Li X, Shi X, Wang M, Du Y. Xylan chitosan conjugate—A potential food preservative. Food Chemistry, 2011, 126(2), 520-525.

[69]

Wu S, Du Y, Hu Y, Shi X W, Zhang L N. Antioxidant and antimicrobial activity of xylan-chitooligomer-zinc complex. Food Chemistry, 2013, 138(2-3), 1312-1319.

[70]

Mao J S, Cui Y L, Wang X H, Sun Y, Yin Y J, Zhao H M, Yao D K. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials, 2004, 25(18), 3973-3981.

[71]

Derkach S R, Kuchina Y A, Baryshnikov A V, Kolotova D S, Voron'ko N G. Tailoring Cod Gelatin Structure and Physical Properties with Acid and Alkaline Extraction. Polymers, 2019, DOI: 10.3390/polym11101724.

[72]

Luo Q, Hossen M A, Zeng Y, Dai J, Li S, Qin W, Liu Y. Gelatin-based composite films and their application in food packaging: A review. Journal of Food Engineering, 2022, 313, 110762.1-110762.16.

[73]

Usman M, Sahar A, Inam-Ur-Raheem M, ur Rahman U, Sameen A, Aadil R M. Gelatin extraction from fish waste and potential applications in food sector. Int Food Sci Technol, 2022, 57, 154-163.

[74]

Ahmady A, Abu Samah N H. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. International Journal of Pharmaceutics, 2021, DOI: 10.1016/j.ijpharm.2021.121037.

[75]

Yasmin R, Shah M, Khan S A, Ali R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnology Reviews, 2017, 6(2), 191-207.

[76]

Al-Nimry S, Dayah A A, Hasan I, Cosmetic Daghmash R., Biomedical and Pharmaceutical Applications of Fish Gelatin/Hydrolysates. Marine Drugs, 2021, DOI: 10.3390/md19030145.

[77]

Luetchford K A, Chaudhuri J B, de Bank P A. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Materials Science and Engineering: C, 2020, DOI: 10.1016/j.msec.2019.110116.

[78]

Sarika P R, James N R. Polyelectrolyte complex nanoparticles from cationised gelatin and sodium alginate for curcumin delivery. Carbohydrate Polymers, 2016, 148, 354-361.

[79]

Voron'ko G N, Svetlana R D, Yuliya A K, Sokolan I N. The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium. Carbohydrate Polymers, 2016, 138, 265-272.

[80]

Fischetti T, Celikkin N, Negrini N C, Farè S, Swieszkowski W. Tripolyphosphate-crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds. Frontiers in Bioengineering and Biotechnology, 2020, DOI: 10.3389/fbioe.2020.00400.

[81]

Berillo D, Elowsson L, Kirsebom H. Oxidized Dextran as Crosslinker for Chitosan Cryogel Scaffolds and Formation of Polyelectrolyte Complexes between Chitosan and Gelatin. Macromol Biosci, 2012, 12, 1090-1099.

[82]

Jafarigol E, Salehi M B, Mortaheb H R. Synergetic effects of additives on structural properties of acrylamide-based hydrogel. Journal of Dispersion Science and Technology, 2021, 42(6), 910-919.

[83]

Martín-López E, Alonso F R, Nieto-Díaz M, Nieto-Sampedro M. Chitosan, Gelatin and Poly(L-lysine) Polyelectrolyte-based Scaffolds and Films for Neural Tissue Engineering. Journal of Biomaterials Science Polymer Edition, 2010, 23(1-4), 207-232.

[84]

Li W, Xu D, Hu Y, Cai K, Lin Y. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application. Mater Sci: Mater Med, 2014, 25, 1435-1448.

[85]

Derkach S R, Kuchina Y A, Kolotova D S, Voron'ko N G. Polyelectrolyte Polysaccharide-Gelatin Complexes: Rheology and Structure. Polymers, 2020, DOI: 10.3390/polym12020266.

[86]

Masina N, Choonara Y E, Kumar P, du Toit L C, Govender M, Indermun S, Pillay V. A review of the chemical modification techniques of starch. Carbohydrate Polymers, 2017, 157, 1226-1236.

[87]

Li X M, Wu Z Z, Zhang B, Pan Y, Meng R, Chen H Q. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chemistry, 2019, 293, 197-203.

[88]

Wang Y J, Assaad E, Ispas-Szabo P, Mateescu M A, Zhu X X. NMR imaging of chitosan and carboxymethyl starch tablets: Swelling and hydration of the polyelectrolyte complex. International Journal of Pharmaceutics, 2011, 419(1-2), 215-221.

[89]

Leonida M, Ispas-Szabo P, Mateescu M A. Self-stabilized chitosan and its complexes with carboxymethyl starch as excipients in drug delivery. Bioactive Materials, 2018, 3(3), 334-340.

[90]

Ispas-Szabo P, de Koninck P, Calinescu C, Mircea A M. Carboxymethyl Starch Excipients for Drug Chronodelivery. AAPS PharmSciTech, 2017, 18(5), 1673-1682.

[91]

Chen L, Hao H Y, Zhang W T, Shao Z Q. Adsorption mechanism of copper ions in aqueous solution by chitosan-carboxymethyl starch composites. J Appl Polym Sci, 2020, DOI: 10.1002/app.48636.

[92]

Qi T, Lv S, Zhang S, Bai X, Liu M. Zein coated porous carboxymethyl starch fertilizer for iron promoting and phosphate sustainable release. Journal of Cleaner Production, 2020, DOI: 10.1016/j.jclepro.2020.120778.

[93]

Wu W, Chen T, Du H, Ding L, Liu J. Carboxymethyl starch as corrosion inhibitor for mild steel. Emerging Materials Research, 2016, 5(2), 277-283.

[94]

Quadrado R F N, Fajardo A R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arabian Journal of Chemistry, 2020, 13(1), 2183-2194.

[95]

Jahanizadeh S, Yazdian F, Marjani A, Omidi M, Rashedi H. Curcumin-loaded Chitosan/Carboxymethyl Starch/Montmorillonite bio-nanocomposite for reduction of dental bacterial biofilm formation. International Journal of Biological Macromolecules, 2017, 105(1), 757-763.

[96]

Saboktakin M R, Tabatabaie R M, Maharramov A, Ramazanov M A. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. International Journal of Biological Macromolecules, 2011, 48(3), 381-385.

[97]

Akram M, Taha I, Ghobashy M M. Low temperature pyrolysis of carboxymethylcellulose. Cellulose, 2016, 23(3), 1713-1724.

[98]

Rahman M S, Hasan M S, Nitai A S, Nam S, Karmakar A K, Ahsan M S, Shiddiky M J A, Ahmed M B. Recent Developments of Carboxymethyl Cellulose. Polymers, 2021, DOI: 10.3390/polym13081345.

[99]

Karataş M, Arslan N. Flow behaviours of cellulose and carboxymethyl cellulose from grapefruit peel. Food Hydrocolloids, 2016, 58, 235-245.

[100]

Benslimane A, Bahlouli I M, Bekkour K, Hammiche D. Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: Rheological considerations. Applied Clay Science, 2016, 132-133, 702-710.

[101]

Lakshmi D S, Trivedi N, Reddy C. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr Polym, 2017, 157, 1604-1610.

[102]

Dong S, Feng S, Liu F, Li R, Li W, Liu F, Shi G, Chen L, Zhang Y. Factors influencing the adhesive behavior of carboxymethyl cellulose-based hydrogel for food applications. International Journal of Biological Macromolecules, 2021, 179, 398-406.

[103]

Javanbakht S, Shaabani A. Carboxymethyl cellulose-based oral delivery systems. International Journal of Biological Macromolecules, 2019, 133, 21-29.

[104]

Chi K, Catchmark J M. Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocolloids, 2018, 80, 195-205.

[105]

Bauli C R, Lima G F, Souza A, Ferreira R R, Rosa D S. Eco-friendly carboxymethyl cellulose hydrogels filled with nanocellulose or nanoclays for agriculture applications as soil conditioning and nutrient carrier and their impact on cucumber growing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, DOI: 10.1016/j.colsurfa.2021.126771.

[106]

Gaihre B, Jayasuriya A C. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Materials Science & Engineering: C, 2016, 69, 733-743.

[107]

Ahmed H B, Emam H E. Layer by Layer Assembly of Nanosilver for High Performance Cotton Fabrics. Fibers and Polymers, 2016, 17(3), 418-426.

[108]

Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci M C, Nicoletta F P, Luppia B. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydrate Polymers, 2016, 143, 124-130.

[109]

Guarnizo-Herrero V, Torrado-Salmerón C, Torres Pabón N S, Durán G T, Morales J, Torrado-Santiago S. Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets. Polymers, 2021, DOI: 10.3390/polym13162813.

[110]

Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H. Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. Journal of Membrane Science, 2009, 333(1-2), 68-78.

[111]

Chen P, Xie F, Tang F, McNally T. Structure and properties of thermomechanically processed chitosan/carboxymethyl cellulose/graphene oxide polyelectrolyte complexed bionanocomposites. International Journal of Biological Macromolecules, 2020, 158, 420-429.

[112]

Klivenko A, Orazzhanova L, Mussabayeva B, Yelemessova G, Kassymova Z. Soil structuring using interpolyelectrolyte complexes of water-soluble polysaccharides. Polymers for Advanced Technologies, 2020, 31(12), 3292-3301.

[113]

Rasente R Y, Imperiale J C, Lázaro-Martínez J M, Gualco L, Oberkersch R, Sosnik A, Calabrese G C. Dermatan sulfate/chitosan polyelectrolyte complex with potential application in the treatment and diagnosis of vascular disease. Carbohydrate Polymers, 2016, 144, 362-370.

[114]

Sharma S, Swetha K L, Roy A. Chitosan-Chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. International Journal of Biological Macromolecules, 2019, 132, 97-108.

[115]

Solomevich S O, Dmitruk E I, Bychkovsky P M, Salamevich D A, Yurkshtovich T L. Biodegradable polyelectrolyte complexes of chitosan and partially crosslinked dextran phosphate with potential for biomedical applications. International Journal of Biological Macromolecules, 2021, 169, 500-512.

[116]

Tekie F S M, Kiani M, Zakerian A, Pilevarian F, Assali A, Soleimani M, Dinarvand R, Arefian E, Atashi A, Amini M. Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydrate Polymers, 2017, 159, 66-75.

[117]

Bilanovic D, Iliassafov L, Kurzbaum E, Armon R. Preparing Xanthan-Chitosan Composites in Glycerol. ChemistrySelect, 2019, 4(21), 6451-6457.

[118]

Souza R F B D, Souza F C B D, Thorpe A, Mantovani D, Moraes N M. Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering. International Journal of Biological Macromolecules, 2020, 143, 619-632.

[119]

Shi Y, Xue J, Xu S, You Y, Yan X Q, Zhao X, Cao J. Polyelectrolyte complex nanoparticles based on chitosan and methoxy poly(ethylene glycol) methacrylate-co-poly(methylacrylic acid) for oral delivery of ibuprofen. Colloids and Surfaces B: Biointerfaces, 2018, 165, 235-242.

[120]

Costa M P M, Ferreira I L M, Cruz Mauricio T M. New polyelectrolyte complex from pectin/chitosan and montmorillonite clay. Carbohydrate Polymers, 2016, 146, 123-130.

[121]

Sivashankari P R, Kumar K K, Devendiran M. Graphene oxide-reinforced pectin/chitosan polyelectrolyte complex scaffolds. Journal of Biomaterials Science Polymer Edition, 2021, 32(17), 2246-2266.

[122]

Volod'ko A V, Davydova V N, Nedashkovskaya O I, Terenteva N A, Chusovitin E A, Galkin N G, Yermak I M. Morphology, electrokinetic characteristics and the effect on biofilm formation of carrageenan: chitosan polyelectrolyte complexes. International Journal of Biological Macromolecules, 2018, 117, 1118-1124.

[123]

Kim H C, Kim M H, Park W H. Polyelectrolyte complex nanofibers from poly(γ-glutamic acid) and fluorescent chitosan oligomer. International Journal of Biological Macromolecules, 2018, 118, 238-243.

[124]

Malviya R, Raj S, Fuloria S, Subramaniyan V, Fuloria N K. Evaluation of Antitumor Efficacy of Chitosan-Tamarind Gum Polysaccharide Polyelectrolyte Complex Stabilized Nanoparticles of Simvastatin. Int J Nanomedicine, 2021, 16, 2533-2553.

[125]

Ouerghemmi S, Degoutin S, Tabary N, Cazaux F, Maton M, Gaucher V, Janus L, Neut C, Chai F, Blanchemain N, et al. Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. International Journal of Pharmaceutics, 2016, 513(1-2), 483-495.

Paper and Biomaterials
Pages 1-19
Cite this article:
Lin Y, Wang X, Liu Q, et al. Preparation and Application of Chitosan-based Polyelectrolyte Complex Materials: An Overview. Paper and Biomaterials, 2022, 7(4): 1-19. https://doi.org/10.1213/j.issn.2096-2355.2022.04.001

1015

Views

137

Downloads

0

Crossref

2

Scopus

Altmetrics

Received: 05 August 2022
Accepted: 22 August 2022
Published: 25 October 2022
© 2022 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return