AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Self-Supporting NiFe LDHs@Co-OH-CO3 Nanorod Array Electrode for Alkaline Anion Exchange Membrane Water Electrolyzer

Dan-Dan Guo1,2Hong-Mei Yu1( )Jun Chi1Zhi-Gang Shao1( )
Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Show Author Information

Graphical Abstract

Abstract

The development of efficient and durable electrodes for anion exchange membrane water electrolyzers (AEMWEs) is essential for hydrogen production. In this work, 2D NiFe layered double hydroxides (NiFe LDHs) nanosheets were grown on the 1D cobaltous carbonate hydroxide nanowires array (Co-OH-CO3) and the unique 3D layered self-supporting nanorod array (NiFe LDHs@Co-OH-CO3/NF) electrode was obtained. Importantly, we demonstrated an efficient and durable self-supporting NiFe LDHs@Co-OH-CO3/NF electrode for oxygen evolution reaction (OER) and as the anode of the AEMWE. In a three-electrode system, the self-supporting NiFe LDHs@Co-OH-CO3/NF electrode showed excellent catalytic activity for OER, with an overpotential of 215 mV at a current density of 20 mA·cm-2 in 1 mol·L-1 KOH, and the promising AEMWE performance upon using as the anode, with a current density of 0.5 A·cm-2 at 1.72 V in 1 mol·L-1 KOH at 70 ℃. The experimental results further revealed the outstanding performance of the electrode with the special morphological structure. The 3D layered structure of nanorod array electrode could effectively prevent the agglomeration of nanosheets, which is conducive to electron transfer and provides a large number of edge active sites for water electrolyzer.

Electronic Supplementary Material

Download File(s)
dhx-28-9-2214003_ESM.pdf (1.3 MB)

References

[1]

Zhang Z, Li X P, Zhong C, Zhao N Q, Deng Y D, Han X P, Hu W B. Spontaneous synthesis of silver-nanoparticle-decorated transition metal hydroxides for enhanced oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2020, 59(18): 7245-7250.

[2]

Xie X Y, Cao C S, Wei W B, Zhou S H, Wu X T, Zhu Q L. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation[J]. Nanoscale, 2020, 12(10): 5817-5823.

[3]

Lv L, Yang Z X, Chen K, Wang C D, Xiong Y J. 2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application[J]. Adv. Energy Mater., 2019, 9(17): 1803358.

[4]

You B, Zhang Y D, Jiao Y, Davey K, Qiao S Z. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water[J]. Angew. Chem. Int. Ed., 2019, 58(34): 11796-11800.

[5]

Qi J, Lin Y P, Chen D D, Zhou T H, Zhang W, Cao R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8917-8921.

[6]

Yao R Q, Shi H, Wan W B, Wen Z, Lang X Y, Jiang Q. Flexible Co-Mo-N/Au electrodes with a hierarchical nanoporous architecture as highly efficient electrocatalysts for oxygen evolution reaction[J]. Adv. Mater., 2020, 32(10): 1907214.

[7]

Javaid S, Xu X M, Chen W, Chen J Y, Hsu H Y, Wang S, Yang X Y, Li Y G, Shao Z P, Jones F, Jia G H. Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity[J]. Nano Energy, 2021, 89: 106463.

[8]

Jiang G, Yu H M, Li Y H, Yao D W, Chi J, Sun S C, Shao Z G. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(13): 15073-15082.

[9]

Moriau L, Bele M, Marinko Ž, Ruiz-Zepeda F, PodborŽek G K, Šala M, Šurca A K, Kovac J, Arcon I, Jovanovic P, Hodnik N, Suhadolnik L. Effect of the morphology of the high-surface-area support on the performance of the oxygen-evolution reaction for iridium nanoparticles[J]. ACS Catal., 2021, 11(2): 670-681.

[10]

Yao Q, Huang B L, Xu Y, Li L G, Shao Q, Huang X Q. A chemical etching strategy to improve and stabilize RuO2-basd nano assemblies for acidic oxygen evolution[J]. Nano Energy, 2021, 84: 105909.

[11]

Han X P, Ling X F, Yu D S, Xie D Y, Li L L, Peng S J, Zhong C, Zhao N Q, Deng Y D, Hu W B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(49): 1905622.

[12]

Sun S N, Sun Y M, Zhou Y, Xi S B, Ren X, Huang B C, Liao H B, Wang L Y P, Du Y H, Xu Z C. Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides[J]. Angew. Chem. Int. Ed., 2019, 58(18): 6042-6047.

[13]

Chen J S, Li H, Chen S M, Fei J Y, Liu C, Yu Z X, Shin K, Liu Z W, Song L, Henkelman G, Wei L, Chen Y. Co-Fe-Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts[J]. Adv. Energy Mater., 2021, 11(11): 2003412.

[14]

Guo X L, Zheng X Q, Hu X L, Zhao Q N, Li L, Yu P, Jing C, Zhang Y X, Huang G S, Jiang B, Xu C H, Pan F S. Electrostatic adsorbing graphene quantum dot into nickel-based layered double hydroxides: Electron absorption/donor effects enhanced oxygen electrocatalytic activity[J]. Nano Energy, 2021, 84: 105932.

[15]

Wang Y, Yan L T, Dastafkan K, Zhao C, Zhao X B, Xue Y Y, Huo J M, Li S N, Zhai Q G. Lattice matching growth of conductive hierarchical porous MOF/LDH heteronanotube arrays for highly efficient water oxidation[J]. Adv. Mater., 2021, 33(8): 2006351.

[16]

Wang Y, Liu B R, Shen X J, Arandiyan H, Zhao T W, Li Y B, Garbrecht M, Su Z, Han L, Tricoli A, Zhao C. Engineering the activity and stability of MOF-nanocomposites for efficient water oxidation[J]. Adv. Energy Mater., 2021, 11(16): 2003759.

[17]

Gao L K, Cui X, Wang Z W, Sewell C D., Li Z L, Liang S, Zhang M Y, Li J, Hu Y J, Lin Z Q. Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution[J]. PNAS, 2021, 118(7): e2023421118.

[18]

Wang K, Du H F, He S, Liu L, Yang K, Sun J M, Liu Y H, Du Z Z, Xie L H, Ai W, Huang W. Kinetically controlled, scalable synthesis of γ-FeOOH nanosheet arrays on nickel foam toward efficient oxygen evolution: The key role of in-situ-generated γ-NiOOH[J]. Adv. Mater., 2021, 33(11): 2005587.

[19]

Hao Y M, Li Y F, Wu J X, Meng L S, Wang J L, Jia C L, Liu T, Yang X J, Liu Z P, Gong M. Recognition of surface oxygen intermediates on NiFe oxyhydroxide oxygen-evolving catalysts by homogeneous oxidation reactivity[J]. J. Am. Chem. Soc., 2021, 143(3): 1493-1502.

[20]

Liu P, Chen B, Liang C W, Yao W T, Cui Y Z, Hu S Y, Zou P C, Zhang H, Fan H J, Yang C. Tip-enhanced electric field: A new mechanism promoting mass transfer in oxygen evolution reactions[J]. Adv. Mater., 2021, 33(9): 2007377.

[21]

Tran D T, Le H T, Hoa V H, Kim N H, Lee J H. Dual-coupling ultrasmall iron-Ni2P into P-doped porous carbon sheets assembled CuxS nanobrush arrays for overall water splitting[J]. Nano Energy, 2021, 84: 105861.

[22]

Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.

[23]

Kargar A, Yavuz S, Kim T K, Liu C-H, Kuru C, Rustomji C S, Jin S, Bandaru P R. Solution-processed CoFe2O4 nanoparticles on 3D carbon fiber papers for durable oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2015, 7(32): 17851-17856.

[24]

Shah J H, Xie Q X, Kuang Z C, Ge R L, Zhou W H, Liu D R, Rykov A I, Li X N, Luo J S, Wang J H. In-situ/operando 57Fe mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2022, 28(3): 51-81.

[25]

Zhao J, Zhang J J, Li Z Y, Bu X H. Recent progress on NiFe-based electrocatalysts for the oxygen evolution reaction[J]. Small, 2020, 16(51): 2003916.

[26]

Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Adv. Energy Mater., 2016, 6(23): 1600621.

[27]

Chi J, Yu H M, Qin B W, Fu L, Jia J, Yi B L, Shao Z G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(1): 464-471.

[28]

Li Y, Guo S W, Jin T, Wang Y L, Cheng F Y, Jiao L F. Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/photovoltage-driven overall water splitting[J]. Nano Energy, 2019, 63: 103821.

[29]

Zhao Y F, Zhang X, Jia X D, Waterhouse G I N., Shi R, Zhang X R, Zhan F, Tao Y, Wu L Z, Tung C H, O’Hare D, Zhang T R. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation[J]. Adv. Energy Mater., 2018, 8(18): 1703585.

[30]

Kuai C G, Zhang Y, Wu D Y, Sokaras D, Mu L Q, Spence S, Nordlund D, Lin F, Du X W. Fully oxidized Ni-Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction[J]. ACS Catal., 2019, 9(7): 6027-6032.

[31]

Chi J, Yu H M, Jiang G, Jia J, Qin B W, Yi B L, Shao Z G. Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(8): 3397-3401.

[32]

Jeon S S, Lim J, Kang P W, Lee J W, Kang G, Lee H. Design principles of NiFe-layered double hydroxide anode catalysts for anion exchange membrane water electrolyzers[J]. ACS Appl. Mater. Interfaces, 2021, 13(31): 37179-37186.

[33]

Guo W W, Kim J, Kim H, Han G H, Jang H W, Kim S Y, Ahn S H. Sandwich-like Co(OH)x/Ag/Co(OH)2 nanosheet composites for oxygen evolution reaction in anion exchange membrane water electrolyzer[J]. J. Alloys Compd., 2021, 889: 161674.

[34]

Lee J, Jung H, Park Y S, Kwon N, Woo S, Selvam N. C S, Han G S, Jung H S, Yoo P J, Choi S M, Han J W, Lim B. Chemical transformation approach for high-performance ternary NiFeCo metal compound-based water splitting electrodes[J]. Appl. Catal., B, 2021, 294: 120246.

[35]

Zhang H, Shen G Q, Liu X Y, Ning B, Shi C X, Pan L, Zhang X W, Huang Z F, Zou J J. Self-supporting NiFe LDH-MoSx integrated electrode for highly efficient water splitting at the industrial electrolysis conditions[J]. Chin. J. Catal., 2021, 42(10): 1732-1741.

[36]

Meena A, Thangavel P, Nissimagoudar A S, Singh A N, Jana A, Jeong D S, Im H, Kim K S. Bifunctional oxovanadate doped cobalt carbonate for high-efficient overall water splitting in alkaline-anion-exchange-membrane water-electrolyzer[J]. Chem. Eng. J., 2022, 430: 132623.

[37]

Wang J Y, Li S M, Lin R B, Tu G M, Wang J, Li Z Q. MOF-derived hollow β-FeOOH polyhedra anchored with α-Ni(OH)2 nanosheets as efficient electrocatalysts for oxygen evolution[J]. Electrochim. Acta, 2019, 301: 258-266.

[38]

Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller J T, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021, 12(1): 4587.

[39]

Han M Y, Zhang X W, Gao H Y, Chen S Y, Cheng P, Wang P, Zhao Z Y, Dang R, Wang G. In situ semi-sacrificial template-assisted growth of ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Chem. Eng. J., 2021, 426: 131348.

[40]

Dou Y H, He C T, Zhang L, Yin H J, Al-Mamun M, Ma J M, Zhao H J. Approaching the activity limit of CoSe2 for oxygen evolution via Fe doping and Co vacancy[J]. Nat. Commun., 2020, 11(1): 1664.

[41]

Peng L S, Yang N, Yang Y Q, Wang Q, Xie X Y, Sun-Waterhouse D, Shang L, Zhang T R, Waterhouse G I N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2021, 60(46): 24612-24619.

[42]

Zhang J T, Yu L, Chen Y, Lu X F, Gao S Y, Lou X W. Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction[J]. Adv. Mater., 2020, 32(16): 1906432.

[43]

Yan Z, Wang E D, Gao J X, Yang J P, Wu C C, Jiang L H, Zhu M Y, Sun G Q. An exceptionally facile synthesis of high efficient oxygen evolution electrodes for zinc-oxygen batteries[J]. ChemElectroChem, 2017, 4(9): 2190-2195.

[44]

Wang Z P, Zhang J H, Yu Q Y, Yang H Y, Chen X, Yuan X, Huang K, Xiong X L. Synthesis of 3D CoO nanowires supported NiFe layered double hydroxide using an atmospheric pressure microplasma for high-performance oxygen evolution reaction[J]. Chem. Eng. J., 2021, 410: 128366.

[45]

Boppella R, Tan J W, Yang W, Moon J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis[J]. Adv. Funct. Mater., 2019, 29(6): 1807976.

[46]

Du Y M, Qu H Q, Liu Y R, Han Y, Wang L, Dong B. Bimetallic CoFeP hollow microspheres as highly efficient bifunctional electrocatalysts for overall water splitting in alkaline media[J]. Appl. Surf. Sci., 2019, 465: 816-823.

[47]

Cui L, Sun X P, Xu Y H, Yang W R, Liu J Q. Cobalt carbonate hydroxide nanowire array on Ti mesh: an efficient and robust 3D catalyst for on-demand hydrogen generation from alkaline NaBH4 solution[J]. Chem. Eur.J., 2016, 22(42): 14831-14835.

[48]

Zhang Y X, Xiao Q Q, Guo X, Zhang X X, Xue Y F, Jing L, Zhai X, Yan Y M, Sun K N. A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes[J]. J. Power Sources, 2015, 278: 464-472.

[49]

Veerasubramani G K, Chandrasekhar A, P. Sudhakaran M S P, Mok Y S, Kim S J. Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core-shell nanostructures assembled with honeycomblike porous carbon[J]. J. Mater. Chem. A, 2017, 5(22): 11100-11113.

[50]

Lu X Y, Zhao C A. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat. Commun., 2015, 6: 6616.

[51]

Bates M K, Jia Q Y, Doan H, Liang W T, Mukerjee S. Charge-transfer effects in Ni-Fe and Ni-Fe-Co mixed-metal oxides for the alkaline oxygen evolution reaction[J]. ACS Catal., 2016, 6(1): 155-161.

[52]

Louie M W, Bell A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. J. Am. Chem. Soc., 2013, 135(33): 12329-12337.

[53]

Zhou Q W, Pu J, Sun X L, Zhu C, Li J C, Wang J, Chang S Z, Zhang H G. In situ surface engineering of nickel inverse opal for enhanced overall electrocatalytic water splitting[J]. J. Mater. Chem. A, 2017, 5(28): 14873-14880.

[54]

Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction[J]. Angew. Chem. Int. Ed., 2016, 55(11): 3694-3698.

[55]

Yang Y, Kang Y K, Zhao H H, Dai X P, Cui M L, Luan X B, Zhang X, Nie F, Ren Z T, Song W Y. An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction[J]. Small, 2020, 16(1): 1905083.

[56]

Xia J L, Zhao H Y, Huang B L, Xu L L, Luo M, Wang J W, Luo F, Du Y P, Yan C H. Efficient optimization of electron/oxygen pathway by constructing ceria/hydroxide interface for highly active oxygen evolution reaction[J]. Adv. Funct. Mater., 2020, 30(9): 1908367.

[57]

Lei Z W, Bai J J, Li Y B, Wang Z L, Zhao C. Fabrication of nanoporous nickel-iron hydroxyl phosphate composite as bifunctional and reversible catalyst for highly efficient intermittent water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(41): 35837-35846.

[58]

Song B, Li K, Yin Y, Wu T, Dang L N, Caban-Acevedo M, Han J C, Gao T L, Wang X J, Zhang Z H, Schmidt J R, Xu P, Jin S. Tuning mixed nickel iron phosphosulfide nanosheet electrocatalysts for enhanced hydrogen and oxygen evolution[J]. ACS Catal., 2017, 7(12): 8549-8557.

[59]

Wang J Y, Wang J, Zhang M, Li S M, Liu R, Li Z Q. Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction[J]. J. Alloys Compd., 2020, 821: 153463.

[60]

Wu H, Lu X, Zheng G F, Ho G W. Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis[J]. Adv. Energy Mater., 2018, 8(14): 1702704.

[61]

Zhang P L, Li L, Nordlund D, Chen H, Fan L Z, Zhang B B, Sheng X, Daniel Q, Sun L C. Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation[J]. Nat. Commun., 2018, 9: 381.

[62]

Yu M Z, Wang Z Y, Liu J S, Sun F, Yang P J, Qiu J S. A hierarchically porous and hydrophilic 3D nickel-iron/mxene electrode for accelerating oxygen and hydrogen evolution at high current densities[J]. Nano Energy, 2019, 63: 103880.

[63]

Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis[J]. Nat. Commun., 2014, 5: 4477.

[64]

Zhu X L, Tang C, Wang H F, Zhang Q, Yang C H, Wei F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts[J]. J. Mater. Chem. A, 2015, 3(48): 24540-24546.

[65]

Park Y S, Yang J C, Lee J M, Jang M J, Jeong J, Choi W S, Kim Y, Yin Y D, Seo M H, Chen Z W, Choi S M. Superior performance of anion exchange membrane water electrolyzer: ensemble of producing oxygen vacancies and controlling mass transfer resistance[J]. Appl. Catal. B, 2020, 278: 119276.

Journal of Electrochemistry
Article number: 2214003
Cite this article:
Guo D-D, Yu H-M, Chi J, et al. Self-Supporting NiFe LDHs@Co-OH-CO3 Nanorod Array Electrode for Alkaline Anion Exchange Membrane Water Electrolyzer. Journal of Electrochemistry, 2022, 28(9): 2214003. https://doi.org/10.13208/j.electrochem.2214003

195

Views

3

Downloads

0

Crossref

3

Scopus

0

CSCD

Altmetrics

Received: 23 May 2022
Revised: 10 June 2022
Published: 30 June 2022
© 2022 Editorial Office of Journal of Electrochemistry
Return