AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline

Weak Gorenstein Graded Modules

Yanhui SONG( )Ting GUO
School of General Education, Lanzhou University of Information Science and Technology, Lanzhou Gansu 730300, China
Show Author Information

Abstract

Let R be a graded ring. The concepts of weak Gorenstein gr-projective modules, gr-injective modules and gr-flat modules are introduced, and some homological characterizations of weak Gorenstein gr-projective modules are given. It is shown that a weak Gorenstein gr-projective module is a Gorenstein gr-projective R-module over a graded n-Gorenstein ring R. Moreover, it is proved that: if any graded injective R-module has a finite graded flat dimension, then a graded module M is weak Gorenstein gr-flat if and only if M is Gorenstein gr-flat.

Article ID: 2096-7675(2024)05-0556-06

References

[1]
ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(1): 611-633.
[2]
ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University(Mathematical Biquarterly), 1993, 10(1): 1-9.
[3]
HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189(1/2/3): 167-193.
[4]
BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(2): 437-445.
[5]
GAO Z H. Weak Gorenstein projective, injective and flat modules[J]. Journal of Algebra and Its Applications, 2013, 12(2): 1-15.
[6]
ASEFA D. Gorenstein-projective modules over morita rings[J]. Algebra Colloquium, 2021, 28(3): 521-532.
[7]
LI S, MARCZINZIK R, ZHANG S H. Gorenstein projective dimensions of modules over minimal Auslander-Gorenstein algebras[J]. Algebra Colloquium, 2021, 28(2): 337-350.
[8]
NASTASESCU C, VAN OYSTAEVEN F. Graded ring theory[M]. Amsterdam: North-Holland, 1982.
[9]
NASTASESCU C, VAN OYSTAEVEN F. Methods of graded rings[M]. Berlin: Springer-Verlag, 2004.
[10]
ASENSIO M J, RAMOS J A L, TORRECILLAS B. Gorenstein GR-injective and GR-projective modules[J]. Communications in Algebra, 1998, 26(1): 225-240.
[11]
ASENSIO M J, LOPEZ RAMOS J A, TORRECILLAS B. Gorenstein gr-flat modules[J]. Communications in Algebra, 1998, 26(10): 3195-3209.
[12]
ASENSIO M J, LOPEZ RAMOS J A, TORRECILLAS B. FP-gr-injective modules and gr-FC-rings[M]//Algebra and Number Theory. Boca Raton: CRC Press, 1999.
[13]
MAO L X. Strongly Gorenstein graded modules[J]. Frontiers of Mathematics in China, 2017, 12(1): 157-176.
Journal of Xinjiang University(Natural Science Edition in Chinese and English)
Pages 556-561
Cite this article:
SONG Y, GUO T. Weak Gorenstein Graded Modules. Journal of Xinjiang University(Natural Science Edition in Chinese and English), 2024, 41(5): 556-561. https://doi.org/10.13568/j.cnki.651094.651316.2024.01.30.0001

8

Views

0

Downloads

0

Crossref

Altmetrics

Received: 30 January 2024
Published: 01 September 2024
© 2024 Journal of Xinjiang University (Natural Science Edition in Chinese and English)
Return