The preparation technology of nano ceramics is an effective means to improve the brittleness and toughness of ceramics. Composite technology and sintering process are important for the preparation of nano ceramics. The uniform dispersion of nano ceramic composite powder is the prerequisite for the preparation of nano ceramics. At present, the most widely applied dispersion and composite technology mainly include liquid phase mixing and chemical wrapping. Advanced sintering technologies, such as spark plasma sintering, hot pressing sintering, oscillating pressure sintering, two-step sintering and hot isostatic pressing sintering, are often used to inhibit grain growth. The development progress, classification and toughening mechanism of nano ceramics are reviewed. With selected examples, the dispersion and sintering technology are summarized. Meanwhile, the microstructure and properties of nano ceramics prepared by different dispersion and sintering technologies are analyzed and overved.
CAHN R W. Nanostructured materials [J]. Nature, 1990, 348(29): 389–390.
KARCH J, BIRRINGER R, GLEITER H. Ceramics ductile at low temperature [J]. Nature, 1987, 330(10): 556–558.
CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth [J]. Nature, 2000, 404(6774): 168–171.
NIIHARA K, IZAKI K, NAKAHIRA A. The Si3N4-SiC nanocomposite with high strength at elevated temperature [J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1990, 37(2): 352–356.
NIIHARA K. New design concept of structural ceramics-ceramic nanocomposites [J]. The Centennial Memorial Issue of the Ceramic Society of Japan, 1991, 99(10): 974–982.
CHEONG D S, HWANG K T, KIM C S. Fabrication, mechanical properties and microstructure analysis of Si3N4/SiC nanocomposite [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(4): 425–427.
NIIHARA K, IZAKI K, KAWAKAMI T. Hot-pressed Si3N4-32% SiC nanocomposite from amorphous Si-C-N powder with improved strength above 1200 ℃ [J]. Journal of Materials Science Letters, 1991, 10(2): 112–114.
KUNTZ J D, ZHAN G D, MUKHERJEE A K. Nanocrystalline-matrix ceramic composites for improved fracture toughness [J]. MRS Bulletin, 2011, 29(1): 22–27.
PALMERO P. Structural ceramic nanocomposites: A review of properties and powders synthesis methods [J]. Nanomaterials, 2015, 5(2): 656–696.
YANG H, ZHANG D H, GE M Z, et al. Journal of Ceramics, 1998, 19 (1): 48–52.
YAN L S, YU H Q, SONG M L, et al. Aerospace Material Technology, 2003 (1): 6–9 + 32.
WANG X, TAN X Y, YIN Y S, et al. Journal of ceramics, 2000, 21 (2): 107–111.
WANG J Y, MI G F. Aerospace Manufacturing Technology, 2008(6): 47–51.
LIU Y, RAMIREZ C, ZHANG L, et al. In situ direct observation of toughening in isotropic nanocomposites of alumina ceramic and multiwall carbon nanotubes [J]. Acta Materialia, 2017, 127: 203–210.
WALKER L S, MAROTTO V R, RAFIEE M A, et al. Toughening in graphene ceramic composites [J]. ACS Nano, 2011, 5(4): 3182–3190.
NAKAHIRA A, NIIHARA K. Sintering behaviors and consolidation process for Al2O3/SiC nanocomposites [J]. Journal of the Ceramic Society of Japan, 1992, 100(4): 448–453.
WANG H Z, GAO L, GUI L H, et al. Journal of Inorganic Materials, 1997, 12(5): 672–674.
KUSUNOSE T, SEKINO T, CHOA Y H, et al. Machinability of silicon nitride/boron nitride nanocomposites [J]. Journal of the American Ceramic Society, 2002, 85(11): 2689–2695.
KUSUNOSE T, SEKINO T, CHOA Y H, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites [J]. Journal of the American Ceramic Society, 2002, 85(11): 2678–2688.
LI J G, GAO L. Preparation of h-BN nano-film coatedα-Si3N4 composite particles by a chemical route [J]. Journal of Materials Chemistry, 2003, 13(3): 628–630.
WAN J L, DUAN R G, MUKHERJEE A K. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts [J]. Scripta Materialia, 2005, 53(6): 663–667.
BOURELL D L, PARIMAL, KAYSSER W. Sol-gel synthesis of nanophase yttria-stabilized tetragonal zirconia and densification behavior below 1600 k [J]. Journal of the American Ceramic Society, 1993, 76(3): 705–711.
SCITI D, VICENS J, HERLIN N, et al. SiC nano-materials produced through liquid phase sintering: processing and properties [J]. Journal of Ceramic Processing Research, 2004, 5(1): 40–47.
KEAR B H, COLAIZZI J, MAYO W E, et al. On the processing of nanocrystalline and nanocomposite ceramics [J]. Scripta Materialia, 2001, 44(8–9): 2065–2068.
EHRE D, GUTMANAS E Y, CHAIM R. Densification of nanocrystalline MgO ceramics by hot-pressing [J]. Journal of the European Ceramic Society, 2005, 25(16): 3579–3585.
CARROLL L, STERNITZKE M, DERBY B. Silicon carbide particle size effects inalumina-based nanocomposites [J]. Acta Materialia, 1996, 44(11): 4543–4552.
YAN L T, SI W J, MIAO H Z. Materials Science & Technology, 2005, 13(4): 337–340.
NIIHARA K, ÜNAL N, NAKAHIRA A. Mechanical-properties of (Y-TZP)-alumina silicon-carbide nanocomposites and the phase-stability of Y-TZP particles in it [J]. Journal of Materials Science, 1994, 29(1): 164–168.
DAVIDGE R W, BROOK R J, CAMBIER F, et al. Fabrication, properties, and modelling of engineering ceramics reinforced with nanoparticles of silicon carbide [J]. British Ceramic Transactions, 1997, 96(3): 121–127.
LIU G J, QIU H B, TODD R, et al. Processing and mechanical behavior of Al2O3/ZrO2 nanocomposites [J]. Materials Research Bulletin, 1998, 33(2): 281–288.
AI H J, XIU Z M, QIN X M, et al. Journal of Northeastern University (Natural Science), 2002, 23(5): 451–454.
KIM S H, KIM Y H, LEE S W, et al. Fracture and tribological behaviors of Al2O3/ 5 vol.% SiC nanocomposite [J]. Materials Science Forum, 2003, 439: 90–94.
PARCHOVIANSKÝ M, GALUSEK D, SEDLÁČEK J, et al. Microstructure and mechanical properties of hot pressed Al2O3/SiC nanocomposites [J]. Journal of the European Ceramic Society, 2013, 33(12): 2291–2298.
LÜ Z H, JIANG D L, ZHANG J X, et al. Preparation and properties of multi-wall carbon nanotube/SiC composites by aqueous tape casting [J]. Science in China Series E: Technological Sciences, 2009, 52(1): 132–136.
YAMAMOTO G, OMORI M, HASHIDA T, et al. A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties [J]. Nanotechnology, 2008, 19(31): 315708.
DONG S M, JIANG D L, TAN S H, et al. Preparation and characterization of nano-structured monolithic SiC and Si3N4/SiC composite by hot isostatic pressing [J]. Journal of Materials Science Letters, 1997, 16: 1080–1083.
GAO L, MIYAMOTO D. Journal of inorganic materials, 1999, 14(3): 495–498.
BHADURI S, BHADURI S B, ZHOU E. Auto ignition synthesis and consolidation of Al2O3-ZrO2 nano/nano composite powders [J]. Journal of Materials Research, 1998, 13(1): 156–165.
SADANGI R K, SHUKLA V, KEAR B H. Processing and properties of ZrO2(3Y2O3)-Al2O3 nanocomposites [J]. International Journal of Refractory Metals and Hard Materials, 2005, 23(4–6): 363–368.
HAREESH U N S, STERNITZKE M, JANSSEN R, et al. Processing and properties of sol-gel-derived alumina/silicon carbide nanocomposites [J]. Journal of the American Ceramic Society, 2004, 87(6): 1024–1030.
GALUSEK D, SEDLÁČEK J, ŠVANČÁREK P, et al. The influence of post-sintering HIP on the microstructure, hardness, and indentation fracture toughness of polymer-derived Al2O3-SiC nanocomposites [J]. Journal of the European Ceramic Society, 2007, 27(2–3): 1237–1245.
NYGREN M, SHEN Z J. On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering [J]. Solid State Sciences, 2003, 5(1): 125–131.
YASUHIRO K, HIROAKI K, YAMAMOTO T, et al. Effect of sintering condition on thermal and electrical properties of denseβ-SiC fabricated by MA-SPS method [J]. Physica Status Solidi. C, 2006, 3(8): 2876–2879.
XU X, NISHIMURA T, HIROSAKI N, et al. New strategies for preparing nanosized silicon nitride ceramics [J]. Journal of the American Ceramic Society, 2005, 88(4): 934–937.
LI S F, IZUI H, OKANO M, et al. Microstructure and mechanical properties of ZrO2 (Y2O3)-Al2O3 nanocomposites prepared by spark plasma sintering [J]. Particuology, 2012, 10(3): 345–351.
YOSHIMURA M, OHJI T, SANDO M, et al. Rapid rate sintering of nano-grained ZrO2-based composites using pulse electric current sintering method [J]. Journal of Materials Science Letters, 1998, 17(16): 1389–1391.
HONG J S, GAO L, TORRE S D D L, et al. Spark plasma sintering and mechanical properties of ZrO2(Y2O3)-Al2O3 composites [J]. Materials Letters, 2000, 43(1–2): 27–31.
CHAUM R, SHEN Z J, NYGREN M. Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering [J]. Journal of Materials Research, 2004, 19(9): 2527–2531.
CHAE J H, KIM K H, CHOA Y H, et al. Microstructural evolution of Al2O3-SiC nanocomposites during spark plasma sintering [J]. Journal of Alloys and Compounds, 2006, 413(1–2): 259–264.
KIM J H, KUMAR B V M, HONG S H, et al. Fabrication of silicon nitride nanoceramics and their tribological properties [J]. Journal of the American Ceramic Society, 2010, 93(5): 1461–1466.
LEE C H, LU H H, WANG C A, et al. Effect of heating rate on spark plasma sintering of a nanosizedβ-Si3N4-based powder [J]. Journal of the American Ceramic Society, 2011, 94(4): 1182–1190.
ZHAN G D, KUNTZ J D, WAN J L, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites [J]. Nature Materials, 2003, 2(1): 38–42.
GAO L, WANG H Z, HONG J S, et al. Mechanical properties and microstructure of nano-SiC-Al2O3 composites densified by spark plasma sintering [J]. Journal of the European Ceramic Society, 1999, 19: 609–613.
ESTILI M, SAKKA Y. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites [J]. Science and Technology of Advanced Materials, 2014, 15(6): 064902.
ESTILI M, SAKKA Y, KAWASAKI A. Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes [J]. Nanotechnology, 2013, 24(15): 155702.
LI J G, YE Y P. Densification and grain growth of Al2O3 nanoceramics during pressureless sintering [J]. Journal of the American Ceramic Society, 2006, 89(1): 139–143.
BINNER J, VAIDHYANATHAN B. Processing of bulk nanostructured ceramics [J]. Journal of the European Ceramic Society, 2008, 28(7): 1329–1339.
XIONG Y, HU J F, SHEN Z J. Dynamic pore coalescence in nanoceramic consolidated by two-step sintering procedure [J]. Journal of the European Ceramic Society, 2013, 33(11): 2087–2092.
SUÁREZ G, SAKKA Y, SUZUKI T S, et al. Effect of bead-milling treatment on the dispersion of tetragonal zirconia nanopowder and improvements of two-step sintering [J]. Journal of the Ceramic Society of Japan, 2009, 117(4): 470–474.
PAUL A, VAIDHYANATHAN B, BINNER J G P. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics [J]. Journal of the American Ceramic Society, 2011, 94(7): 2146–2152.
SANTACRUZ I, ANAPOORANI K, BINNER J. Preparation of high solids content nanozirconia suspensions [J]. Journal of the American Ceramic Society, 2008, 91(2): 398–405.
CHEN J, HUANG X W, QIN G H. Journal of the Chinese Ceramic Society, 2012, 40 (3): 335–339.
DENG X Y, LI D J, LI J B, et al. Chinese Science E: Technical Science, 2009, 39(1): 161–165.
WANG X H, DENG X Y, BAI H L, et al. Two-step sintering of ceramics with constant grain-size, Ⅱ: BaTio3 and Ni–Cu–Zn ferrite [J]. Journal of the American Ceramic Society, 2006, 89(2): 438–443.
COLOGNA M, RASHKOVA B, RAJ R. Flash sintering of nanograin zirconia in <5 s at 850 ℃ [J]. Journal of the American Ceramic Society, 2010, 93(11): 3556–3559.
BIESUZ M, SEDLÁK R, SAUNDERS T, et al. Flash spark plasma sintering of 3YSZ [J]. Journal of the European Ceramic Society, 2019, 39(5): 1932–1937.
FU Z Y, JI W, WANG W M. Journal of the Chinese Ceramic Society, 2017, 45 (9): 1211–1219
XIE Z P, LI S, AN L, et al. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics [J]. Journal of the American Ceramic Society, 2014, 97(4): 1012–1015.
HAN Y, LI S, ZHU T B, et al. An oscillatory pressure sintering of zirconia powder: Rapid densification with limited grain growth [J]. Journal of the American Ceramic Society, 2017, 100(7): 2774–2780.
LI S, XIE Z P, AN D, et al. Zirconia ceramics consolidated by oscillatory pressure sintering and subsequent carburization [J]. Ceramics International, 2019, 45(7): 9038–9042.