PDF (12.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Research Progress of High Temperature Superplastic Ceramics

Fangnan ZHAO1Zhipeng XIE1,2()
Jingdezhen Ceramic University, Jingdezhen 333043, Jiangxi, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Show Author Information

Abstract

High temperature superplastic ceramics or ceramic high temperature superplasticity means that polycrystalline ceramic materials exhibit high elongation ability at high temperatures at under applied stresses without necking or cavities during tensile process. The maximum tensile superplastic deformation rate of ceramics with fine grain microstructure can reach 1053%. A large number of studies indicated that, in addition to tensile or compression deformation, ceramics can also achieve a specific shape similar to that of metals. Generally, grain boundary slip is considered to be the mechanism of ceramic superplasticity, while dislocation slip and creep also play an important role. The development and mechanism of superplastic ceramics are summarized. The superplastic properties and variation of oxide, non-oxide and various composite ceramics have been discussed. The tensile and compression deformation capacities of these ceramics under different conditions are summarized.

CLC number: TQ174.75 Document code: A Article ID: 1000-2278(2022)03-0357-14

References

[1]

DAY R B, STOKES R J. Mechanical behavior of polycrystalline magnesium oxide at high temperatures [J]. Journal of the American Ceramic Society, 1966, 49(7): 345–355.

[2]

WAKAI F, SAKAGUCHI S, MATSUNO Y. Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals [J]. Advanced Ceramic Materials, 1986, 1(3): 259–263.

[3]

WAKAI F, SAKAGUCHI S, KANAYAMA K, et al. Hot work of yttria-stabilized tetragonal ZrO2 polycrystals [J]. Ceramic Materials and Components for Engines, 1986: 315–322.

[4]

WAKAI F. Superplasticity of ceramics [J]. Ceramics International, 1991, 17(3): 153–163.

[5]

HU S L. Ordnance Material Science and Engineering, 1995, 18(2): 3–10.

[6]

COBLE R L. A model for boundary diffusion controlled creep in polycrystalline materials [J]. Journal of Applied Physics, 1963, 34(6): 1679–1682

[7]

CARTER C B, NORTON M G. Ceramic materials: Science and engineering [M]. New York: Springer, 2007.

[8]

LUO J T, LI H B, GU Y F, et al. Journal of Plasticity Engineering, 2019, 26(2): 97–103.

[9]

WAKAI F. Grain boundary dynamics in ceramics superplasticity [J]. Revista de Metalurgia (Madrid), 2001, 37(2): 308–310.

[10]

WAKAI F, KATO H, SAKAGUCHI S, et al. Compressive deformation of Y2O3-stabilized ZrO2/Al2O3 composite [J]. International Journal of High Technology Ceramics, 1987, 3(3): 255.

[11]

WAKAI F, KATO H. Superplasticity of TZP/Al2O3 composite [J]. Advanced Ceramic Materials, 1988, 3(1): 71–76.

[12]

NIEH T G, MCNALLY C M, WADSWORTH J. Superplastic behavior of a 20% Al2O3/YTZ ceramic composite [J]. Scripta Metallurgica, 1989, 23(4): 457–460.

[13]

ISHIHARA S, AKASHIRO K, TANIZAWA T, et al. Superplastic deformation mechanisms of alumina zirconia two phase ceramics [J]. Materials Transactions, JIM, 2000, 41(3): 376–382.

[14]

ZHANG K F, CHEN G Q, WANG G F. Journal of Inorganic Materials, 2003, 18(4): 705–715.

[15]

NIEH T G, MCNALLY C M, WADSWORTH J. Superplastic properties of a fine-grained yttria-stabilized tetragonal polycrystal of zirconia [J]. Scripta Metallurgica, 1988, 22(8): 1297–1300.

[16]

WINNUBST A J A, BOUTZ M M R. Superplastic deep drawing of tetragonal zirconia ceramics at 1160 ℃ [J]. Journal of the European Ceramic Society, 1998, 18(14): 2101–2106.

[17]

SUZUKI T S, SAKKA Y, MORITA K, et al. Enhanced superplasticity in a alumina-containing zirconia prepared by colloidal processing [J]. Scripta Materialia, 2000, 43(8): 705–710.

[18]

NIEH T G, WADSWORTH J. Superplastic behaviour of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) [J]. Acta Metallurgica et Materialia, 1990, 38(6): 1121–1133.

[19]

YOSHIDA H, MORITA K, KIM B N, et al. Doping amount and temperature dependence of superplastic flow in tetragonal ZrO2 polycrystal doped with TiO2 and/or GeO2 [J]. Acta Materialia, 2009, 57(10): 3029–3038.

[20]

CRAMPON J, ESCAIG B. Mechanical properties of fine‐grained magnesium oxide at large compressive strains [J]. Journal of the American Ceramic Society, 1980, 63(11/12): 680–686.

[21]

CARRY C, MOCELLIN A. Structural superplasticity in single phase crystalline ceramics [J]. Ceramics International, 1987, 13(2): 89–98.

[22]

HULBERT D M, JIANG D T, KUNTZ J D, et al. A low-temperature high-strain-rate formable nanocrystalline superplastic ceramic [J]. Scripta Materialia, 2007, 56(12): 1103–1106.

[23]

HAN Y H, KIM B N, YOSHIDA H, et al. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics [J]. Advances in Applied Ceramics, 2016, 115(3): 174–184.

[24]

KIM W J, WOLFENSTINE J, SHERBY O D. Tensile ductility of superplastic ceramics and metallic alloys [J]. Acta Metallurgica et Materialia, 1991, 39(2): 199–208.

[25]

GROOT ZEVERT W F M, WINNUBST A J A, THEUNISSEN G S A M, et al. Powder preparation and compaction behaviour of fine-grained Y-TZP [J]. Journal of Materials Science, 1990, 25(8): 3449–3455.

[26]

MA Y, LANGDON T G. A critical assessment of flow and cavity formation in a superplastic yttria-stabilized zirconia [J]. Acta Metallurgica et Materialia, 1994, 42(8): 2753–2761.

[27]

PRIMDAHL S, THÖLEN A, LANGDON T G. Microstructural examination of a superplastic yttria-stabilized zirconia: implications for the superplasticity mechanism [J]. Acta Metallurgica et Materialia, 1995, 43(3): 1211–1218.

[28]
ZHOU M, MA Y, LANGDON T G. A quantitative analysis of cavity formation in superplastic yttria-stabilized tetragonal zirconia [M]// BRADT R C, BROOKES C A, ROUTBORT J L. Plastic Deformation of Ceramics. Boston: Springer, 1995.
[29]

SAKKA Y, SUZUKI T S, MORITA K, et al. Colloidal processing and superplastic properties of zirconia- and alumina-based nanocomposites [J]. Scripta Materialia, 2001, 44(8/9): 2075–2078.

[30]

SHEN Z, PENG H, NYGREN M. Formidable increase in the superplasticity of ceramics in the presence of an electric field [J]. Advanced Materials, 2003, 15(12): 1006–1009.

[31]

ZHOU X, HULBERT D M, KUNTZ J D, et al. Superplasticity of zirconia-alumina-spinel nanoceramic composite by spark plasma sintering of plasma sprayed powders [J]. Materials Science and Engineering: A, 2005, 394(1/2): 353–359.

[32]

ZHAN G D, GARAY J E, MUKHERJEE A K. Ultralow-temperature superplasticity in nanoceramic composites [J]. Nano Letters, 2006, 5(12): 2593–2597.

[33]

WAKAI F, KODAMA Y, SAKAGUCHI S, et al. A superplastic covalent crystal composite [J]. Nature, 1990, 344(6265): 421–423.

[34]

WANANURUKSAWONG R, SHINODA Y, AKATSU T, et al. High strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression [J]. Scripta Materialia, 2015, 103: 22–25.

[35]

OHJI T, SAKAI S, ITO M, et al. Yielding phenomena of hot-pressed Si3N4 [J]. High Temperature Technology, 1987, 5(3): 139–144.

[36]

LI C R, XIE Z P, ZHAO L. Journal of Ceramics, 2020, 41(2): 137–149.

[37]

SHINODA Y, NAGANO T, GU H, et al. Superplasticity of silicon carbide [J]. Journal of the American Ceramic Society, 1999, 82(10): 2916–2918.

[38]

WANG J G, RAJ R. Mechanism of superplastic flow in a fine-grained ceramic containing some liquid phase [J]. Journal of the American Ceramic Society, 1984, 67(6): 399–409.

[39]

ZHANG Y N, YAN F Y, WU L E. Journal of Ceramics, 2008(2): 100–104.

[40]
CARRY C, MOCELLIN A. High temperature creep of dense fine grained silicon carbides [M]// TRESSLER R E, BRADT R C. Deformation of ceramic materials Ⅱ. Boston: Springer, 1984.
Journal of Ceramics
Pages 357-370
Cite this article:
ZHAO F, XIE Z. Research Progress of High Temperature Superplastic Ceramics. Journal of Ceramics, 2022, 43(3): 357-370. https://doi.org/10.13957/j.cnki.tcxb.2022.03.001
Metrics & Citations  
Article History
Copyright
Return