PDF (19.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Research Progress on the Long-term Stability of Ni-YSZ Fuel Electrodes in Solid Oxide Cells

Qing SHAO1,2,3,4Linghong LUO1()Chengzhi GUAN2,4()Jianqiang WANG2,4Dun JIN2,4Jianfeng YU1Youchen LIN2,4
Key Laboratory of Fuel Cell Materials and Devices, Jingdezhen Ceramic University, Jingdezhen 333001, Jiangxi, China
Department of Hydrogen Technique, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Jiangxi Arts & Ceramics Technology Institute, Jingdezhen 333400, Jiangxi, China
Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800, China
Show Author Information

Abstract

Solid oxide cells (SOCs) are promising energy conversion technology for carbon-neutral direction. Although impressive progress has been made in developing mixed ionic and electronic conductor (MIEC) composite electrodes and perovskite fuel electrodes, Ni-YSZ is the best option for commercial application, because of its excellent catalytic effect for both hydrogen oxidation reaction (HOR) in SOFC and hydrogen evolution reaction (HER) in SOEC. However, the degradation of Ni-YSZ electrodes is still an important issue restricting the development of SOCs. Ni-YSZ electrode materials are briefly introduced and the typical phenomena related to Ni-YSZ electrode degradation in SOFC and SOEC are summarized. Also, the reason of degradation of the Ni-YSZ electrode is examined, based on which improvement strategies are proposed. Finally, an outlook on the optimization for the long-term stability of Ni-YSZ electrodes is presented.

CLC number: TQ174.75 Document code: A Article ID: 1000-2278(2022)05-0759-21

References

[1]
NALLEY S, LAROSE A. Global energy review: CO2 emissions in 2021 [R]. Paris: International Energy Agency, 2021.
[2]

MOGENSEN M B. Materials for reversible solid oxide cells [J]. Current Opinion in Electrochemistry, 2020, 21: 265–273.

[3]

GALADIMA A, MURAZA O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review [J]. Journal of Natural Gas Science and Engineering, 2015, 25: 303–316.

[4]

GÓMEZ S Y, HOTZA D. Current developments in reversible solid oxide fuel cells [J]. Renewable and Sustainable Energy Reviews, 2016, 61: 155–174.

[5]

HANSEN J B. Solid oxide electrolysis-A key enabling technology for sustainable energy scenarios [J]. Faraday Discuss, 2015, 182: 9–48.

[6]

SSONG Y F, ZHANG X M, XIE K, et al. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects [J]. Advanced Materials, 2019, 31(50): 1902033.

[7]

ZHU B, RAZA R, FAN L, et al. Solid oxide fuel cells: From electrolyte-based to electrolyte-free devices [M]. Newark: John Wiley & Sons, 2020.

[8]

SUDIREDDY B R, FOGHMOES S P, RAMOS T, et al. Development of redox stable fuel electrode supported solid oxide cells [J]. International Journal of Hydrogen Energy, 2019, 44(9): 4463–4467.

[9]

YU J F, LUO L H, CHENG L, et al. Journal of Ceramics, 2020, 41(5): 613–626.

[10]

NIKOOYEH K, CLEMMER R, ALZATE-RESTREPO V, et al. Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane [J]. Applied Catalysis A: General, 2008, 347(1): 106–111.

[11]

RASMUSSEN J F B, HAGEN A. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells [J]. Journal of Power Sources, 2009, 191(2): 534–541.

[12]

HAGEN A, RASMUSSEN J F B, THYDÉN K. Durability of solid oxide fuel cells using sulfur containing fuels [J]. Journal of Power Sources, 2011, 196(17): 7271–7276.

[13]

PIHLATIE M, KAISER A, MOGENSEN M. Redox stability of SOFC: Thermal analysis of Ni-YSZ composites [J]. Solid State Ionics, 2009, 180(17): 1100–1112.

[14]

SIMWONIS D, TIETZ F, STÖVER D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells [J]. Solid State Ionics, 2000, 132(3/4): 241–251.

[15]

TRINI M, JØRGENSEN P S, HAUCH A, et al. 3D microstructural characterization of Ni/YSZ electrodes exposed to 1 year of electrolysis testing [J]. Journal of The Electrochemical Society, 2019, 166(2): F158–F67.

[16]

EICHLER A. Tetragonal Y-doped zirconia: Structure and ion conductivity [J]. Physical Review B, 2001, 64(17): 174103.

[17]

USHAKOV S V, BROWN C E, NAVROTSKY A. Effect of La and Y on crystallization temperatures of hafnia and zirconia [J]. Journal of Materials Research, 2011, 19(3): 693–696.

[18]

SUN C, HUI R, ROLLER J. Cathode materials for solid oxide fuel cells: A review [J]. Journal of Solid State Electrochemistry, 2009, 14(7): 1125–1144.

[19]
HUANG K. Solid oxide fuel cells [M]// GASIK M. Materials for Fuel Cells. Cambridge: Woodhead Publishing, 2008.
[20]
ZHANG X, PODILCHUK C I. Face location and recognition [A]. Proceedings of SPIE - Electronic Imaging: Science and Technology [C]. Bellingham: SPIE, 1996: 252–262.
[21]

IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers [J]. Nature Energy, 2016, 1(1): 1–13.

[22]

FENG Y, DING X, MA Z, et al. Journal of Ceramics, 2021, 42(3): 360–375.

[23]

YAO Y, CAI P J, WANG S R, et al. Journal of Ceramics, 2021, 42(4): 560–568.

[24]

LIN Y, ZHAN Z, LIU J, et al. Direct operation of solid oxide fuel cells with methane fuel [J]. Solid State Ionics, 2005, 176(23/24): 1827–1835.

[25]

MAČEK J, NOVOSEL B, MARINŠEK M. Ni-YSZ SOFC anodes—minimization of carbon deposition [J]. Journal of the European Ceramic Society, 2007, 27(2/3): 487–491.

[26]

PÉREZ-CABERO M, ROMEO E, ROYO C, et al. Growing mechanism of CNTs: A kinetic approach [J]. Journal of Catalysis, 2004, 224(1): 197–205.

[27]

GOHIER A, EWELS C P, MINEA T M, et al. Carbon nanotube growth mechanism switches from tipto base-growth with decreasing catalyst particle size [J]. Carbon, 2008, 46(10): 1331–1338.

[28]

JIAO Y, ZHANG L Q, AN W T, et al. Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane [J]. Energy, 2016, 113: 432–443.

[29]

ABILD-PEDERSEN F, NØRSKOV J K, ROSTRUP-NIELSEN J R, et al. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations [J]. Physical Review B, 2006, 73(11): 115419.

[30]

LYU Y, WANG P, LIU D, et al. Tracing the active phase and dynamics for carbon nanofiber growth on nickel catalyst using environmental transmission electron microscopy [J]. Small Methods, 2022, 6(6): 2200235.

[31]

LEI T, MAO J, LIU X, et al. Carbon deposition and permeation on nickel surfaces in operando conditions: a theoretical study [J]. The Journal of Physical Chemistry C, 2021, 125(13): 7166–7177.

[32]

EGUCHI K, KOJO H, TAKEGUCHI T, et al. Fuel flexibility in power generation by solid oxide fuel cells [J]. Solid State Ionics, 2002, 152/153: 411–416.

[33]

DICKS A, POINTON K, SIDDLE A. Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode [J]. Journal of Power Sources, 2000, 86(1/2): 523–530.

[34]

TAKEGUCHI T, KANI Y, YANO T, et al. Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets [J]. Journal of Power Sources, 2002, 112(2): 588–595.

[35]

SINGH D, HERNÁNDEZ-PACHECO E, HUTTON P N, et al. Carbon deposition in an SOFC fueled by tar-laden biomass gas: A thermodynamic analysis [J]. Journal of Power Sources, 2005, 142(1/2): 194–199.

[36]

IIDA T, KAWANO M, MATSUI T, et al. Internal reforming of SOFCs: Carbon deposition on fuel electrode and subsequent deterioration of cell [J]. Journal of The Electrochemical Society, 2006, 154(2): B234–B241.

[37]

FARHAD S, HAMDULLAHPUR F. Developing fuel map to predict the effect of fuel composition on the maximum efficiency of solid oxide fuel cells [J]. Journal of Power Sources, 2009, 193(2): 632–638.

[38]

DUBOVIKS V, LOMBERG M, MAHER R C, et al. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells [J]. Journal of Power Sources, 2015, 293: 912–921.

[39]

ALZATE-RESTREPO V, HILL J M. Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane [J]. Applied Catalysis A: General, 2008, 342(1/2): 49–55.

[40]

HORITA T, YAMAJI K, KATO T, et al. Imaging of CH4 decomposition around the Ni/YSZ interfaces under anodic polarization [J]. Journal of Power Sources, 2005, 145(2): 133–138.

[41]

HAUCH A, TRAULSEN M L, KÜNGAS R, et al. CO2 electrolysis – Gas impurities and electrode overpotential causing detrimental carbon deposition [J]. Journal of Power Sources, 2021, 506: 230108.

[42]

TAO Y, EBBESEN S D, MOGENSEN M B. Carbon Deposition in solid oxide cells during co-electrolysis of H2O and CO2 [J]. Journal of The Electrochemical Society, 2014, 161(3): F337–F343.

[43]

NI M. An electrochemical model for syngas production by co-electrolysis of H2O and CO2 [J]. Journal of Power Sources, 2012, 202: 209–216.

[44]

LI W Y, SHI Y X, LUO Y, et al. Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: The effects of microstructure and thickness [J]. International Journal of Hydrogen Energy, 2014, 39(25): 13738–13750.

[45]
EGUCHI K, HATAGISHI T, ARAI H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceria-based electrolyte [J]. Solid State Ionics, 1996, 86/87/88: 1245–1249.
[46]

TAO Y, EBBESEN S D, ZHANG W, et al. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide [J]. ChemCatChem, 2014, 6(5): 1220–1224.

[47]

LI W Y, SHI Y X, LUO Y, et al. Carbon deposition on patterned nickel/yttria stabilized zirconia electrodes for solid oxide fuel cell/solid oxide electrolysis cell modes [J]. Journal of Power Sources, 2015, 276: 26–31.

[48]

CHEN K, JIANG S P. Failure mechanism of (La, Sr) MnO3 oxygen electrodes of solid oxide electrolysis cells [J]. International Journal of Hydrogen Energy, 2011, 36(17): 10541–10549.

[49]

KNIBBE R, TRAULSEN M L, HAUCH A, et al. Solid oxide electrolysis cells: degradation at high current densities [J]. Journal of The Electrochemical Society, 2010, 157(8): B1209–B1217.

[50]

KEANE M, MAHAPATRA M K, VERMA A, et al. LSM-YSZ interactions and anode delamination in solid oxide electrolysis cells [J]. International Journal of Hydrogen Energy, 2012, 37(22): 16776–16785.

[51]

TONG X, OVTAR S, BRODERSEN K, et al. A 4×4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25996–26004.

[52]

TRINI M, HAUCH A, DE ANGELIS S, et al. Comparison of microstructural evolution of fuel electrodes in solid oxide fuel cells and electrolysis cells [J]. Journal of Power Sources, 2020, 450: 227599.

[53]

KIM J, JI H I, DASARI H P, et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization [J]. International Journal of Hydrogen Energy, 2013, 38(3): 1225–1235.

[54]

TIETZ F, SEBOLD D, BRISSE A, et al. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation [J]. Journal of Power Sources, 2013, 223: 129–135.

[55]

LAGUNA-BERCERO M, CAMPANA R, LARREA A, et al. Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation [J]. Journal of Power Sources, 2011, 196(21): 8942–8947.

[56]

CHENG Z, LIU M. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy [J]. Solid State Ionics, 2007, 178(13/14): 925–935.

[57]

SUN X, CHEN M, HJALMARSSON P, et al. Performance and durability of solid oxide electrolysis cells for syngas production [J]. Journal of The Electrochemical Society, 2012, 41(33): 77–85.

[58]

EBBESEN S D, MOGENSEN M. Electrolysis of carbon dioxide in solid oxide electrolysis cells [J]. Journal of Power Sources, 2009, 193(1): 349–358.

[59]

EBBESEN S D, GRAVES C, HAUCH A, et al. Poisoning of solid oxide electrolysis cells by impurities [J]. Journal of The Electrochemical Society, 2010, 157(10): B1419–B1429.

[60]

ZHA S, CHENG Z, LIU M. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2006, 154(2): B201–B206.

[61]

LEE H S, LEE H M, PARK J Y, et al. Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration [J]. International Journal of Hydrogen Energy, 2018, 43(49): 22511–22518.

[62]

CHENG Z, WANG J H, CHOI Y, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: electrochemical behavior, in situ characterization, modeling, and future perspectives [J]. Energy & Environmental Science, 2011, 4(11): 4380–4409.

[63]

LUSSIER A, SOFIE S, DVORAK J, et al. Mechanism for SOFC anode degradation from hydrogen sulfide exposure [J]. International Journal of Hydrogen Energy, 2008, 33(14): 3945–3451.

[64]

HAGEN A. Sulfur poisoning of the water gas shift reaction on anode supported solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2012, 160(2): F111–F118.

[65]
HANSEN J B, ROSTRUP-NIELSEN J. Sulfur poisoning on Ni catalyst and anodes [M]// VIELSTICH W, GASTEIGER H A, LAMM A, et al. Handbook of Fuel Cells. New Jersey: John Wiley & Sons, 2010.
[66]

SASAKI K, ADACHI S, HAGA K, et al. Fuel impurity tolerance of solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2007, 7(1): 1675–1683.

[67]

SASAKI K, SUSUKI K, IYOSHI A, et al. H2S poisoning of solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2006, 153(11): A2023–A2029.

[68]

YANG L, CHENG Z, LIU M, et al. New insights into sulfur poisoning behavior of Ni-YSZ anode from long-term operation of anode-supported SOFCs [J]. Energy & Environmental Science, 2010, 3(11): 1804–1809.

[69]

PAPURELLO D, LANZINI A, FIORILLI S, et al. Sulfur poisoning in Ni-anode solid oxide fuel cells (SOFCs): Deactivation in single cells and a stack [J]. Chemical Engineering Journal, 2016, 283: 1224–1233.

[70]

HAUCH A, HAGEN A, HJELM J, et al. Sulfur poisoning of SOFC anodes: Effect of overpotential on long-term degradation [J]. Journal of The Electrochemical Society, 2014, 161(6): F734–F743.

[71]

YOSHIZUMI T, TANIGUCHI S, SHIRATORI Y, et al. Sulfur poisoning of SOFCs: Voltage oscillation and Ni oxidation [J]. Journal of The Electrochemical Society, 2012, 159(11): F693–F701.

[72]

CAYAN F N, PAKALAPATI S R, CELIK I, et al. A degradation model for solid oxide fuel cell anodes due to impurities in coal syngas: Part Ⅰtheory and validation [J]. Fuel Cells, 2012, 12(3): 464–473.

[73]

CHENG Z, ZHA S, LIU M. Influence of cell voltage and current on sulfur poisoning behavior of solid oxide fuel cells [J]. Journal of Power Sources, 2007, 172(2): 688–693.

[74]

HARRIS W M, LOMBARDO J J, NELSON G J, et al. Three-dimensional microstructural imaging of sulfur poisoning-induced degradation in a Ni-YSZ anode of solid oxide fuel cells [J]. Scientific Reports, 2014, 4(1): 5246.

[75]

BRAUN A, JANOUSCH M, SFEIR J, et al. Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy [J]. Journal of Power Sources, 2008, 183(2): 564–570.

[76]

CHO A, HWANG B, HAN J W. Development of Ni-based alloy catalysts to improve the sulfur poisoning resistance of Ni/YSZ anodes in SOFCs [J]. Catalysis Science & Technology, 2020, 10(14): 4544–4552.

[77]

MADI H, LANZINI A, DIETHELM S, et al. Solid oxide fuel cell anode degradation by the effect of siloxanes [J]. Journal of Power Sources, 2015, 279: 460–471.

[78]

TIAN J, MILCAREK R J. Degradation comparison of cyclic and linear siloxane contamination on solid oxide fuel cells Ni-YSZ anode [J]. Frontiers in Energy Research, 2021, 9: 749771.

[79]

MADI H, DIETHELM S, POITEL S, et al. Damage of siloxanes on Ni-YSZ anode supported SOFC operated on hydrogen and bio-syngas [J]. Fuel Cells, 2015, 15(5): 718–727.

[80]

HAGA K, SHIRATORI Y, ITO K, et al. Chemical degradation and poisoning mechanism of cermet anodes in solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2009, 25(2): 2031–2038.

[81]

HAGA K, ADACHI S, SHIRATORI Y, et al. Poisoning of SOFC anodes by various fuel impurities [J]. Solid State Ionics, 2008, 179(27): 1427–1431.

[82]

SASAKI K, HAGA K, YOSHIZUMI T, et al. Impurity poisoning of SOFCs [J]. Journal of The Electrochemical Society, 2011, 35(1): 2805–2814.

[83]

TIAN J, MILCAREK R J. Investigating the degradation mechanism of the solid oxide fuel cell nickel-yttria stabilized zirconia anode under siloxane contamination [J]. Journal of Power Sources, 2020, 480: 229122.

[84]

TIAN J, MILCAREK R J. Investigating the influence of Ni, ZrO2, and Y2O3 from SOFC anodes on siloxane deposition [J]. ECS Journal of Solid State Science and Technology, 2022, 11(4): 044005.

[85]

ONG K, HANNA J, GHONIEM A F. Investigation of a combined hydrogen and oxygen spillover mechanism for syngas electro-oxidation on Ni/YSZ [J]. Journal of The Electrochemical Society, 2017, 164(2): F32–F45.

[86]

HAUCH A, JENSEN S H, BILDE-SØRENSEN J B, et al. Silica segregation in the Ni/YSZ electrode [J]. Journal of The Electrochemical Society, 2007, 154(7): A619–A626.

[87]

HAUCH A, BOWEN J R, KUHN L T, et al. Nanoscale chemical analysis and imaging of solid oxide cells [J]. Electrochemical and Solid-State Letters, 2008, 11(3): B38–B41.

[88]

TAO Y K, SHAO J, CHENG S Y. Electrochemically scavenging the silica impurities at the Ni-YSZ triple phase boundary of solid oxide cells [J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17023–17027.

[89]

NECHACHE A, BOUKAMP B A, CASSIR M, et al. Premature degradation study of a cathode-supported solid oxide electrolysis cell [J]. Journal of Solid State Electrochemistry, 2018, 23(1): 109–123.

[90]

HUANG K, GOODENOUGH J B. Solid oxide fuel cell technology: principles, performance and operations [M]. Cambridge: Woodhead Publishing, 2009.

[91]

BAO J, KRISHNAN G N, JAYAWEERA P, et al. Effect of various coal contaminants on the performance of solid oxide fuel cells: Part Ⅰ. Accelerated testing [J]. Journal of Power Sources, 2009, 193(2): 607–616.

[92]

XU C, ZONDLO J W, GONG M, et al. Effect of PH3 poisoning on a Ni-YSZ anode-supported solid oxide fuel cell under various operating conditions [J]. Journal of Power Sources, 2011, 196(1): 116–125.

[93]

DEMIRCAN O, ZHANG W, XU C, et al. The effect of overpotential on performance degradation of the solid oxide fuel cell Ni/YSZ anode during exposure to syngas with phosphine contaminant [J]. Journal of Power Sources, 2010, 195(10): 3091–3096.

[94]

SEZER H, MASON J H, CELIK I B, et al. Three-dimensional modeling of performance degradation of planar SOFC with phosphine exposure [J]. International Journal of Hydrogen Energy, 2021, 46(9): 6803–681.

[95]

ZHAO F, VIRKAR A V. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters [J]. Journal of Power Sources, 2005, 141(1): 79–95.

[96]

HAGA K, SHIRATORI Y, ITO K, et al. Chlorine poisoning of SOFC Ni-cermet anodes [J]. Journal of The Electrochemical Society, 2008, 155(12): B1233–B1239.

[97]

TREMBLY J P, GEMMEN R S, BAYLESS D J. The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration [J]. Journal of Power Sources, 2007, 169(2): 347–354.

[98]

XU C, GONG M, ZONDLO J W, et al. The effect of HCl in syngas on Ni-YSZ anode-supported solid oxide fuel cells [J]. Journal of Power Sources, 2010, 195(8): 2149–2158.

[99]

COUTE N, ORTEGO J D, RICHARDSON J, et al. Catalytic steam reforming of chlorocarbons: Trichloroethane, trichloroethylene and perchloroethylene [J]. Applied Catalysis, 1998, 19(3): 175–187.

[100]

REEPING K W, WALKER R A. In operando vibrational Raman studies of chlorine contamination in solid oxide fuel cells [J]. Journal of The Electrochemical Society, 2015, 162(12): F1310–F1315.

[101]

MARINA O A, PEDERSON L R, THOMSEN E C, et al. Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas [J]. Journal of Power Sources, 2010, 195(20): 7033–7037.

[102]

JEANMONOD G, DIETHELM S, VAN HERLE J. Poisoning effects of chlorine on a solid oxide cell operated in co-electrolysis [J]. Journal of Power Sources, 2021, 506: 230247.

[103]

TREMBLY J P, GEMMEN R S, BAYLESS D J. The effect of coal syngas containing AsH3 on the performance of SOFCs: Investigations into the effect of operational temperature, current density and AsH3 concentration [J]. Journal of Power Sources, 2007, 171(2): 818–825.

[104]
KRISHNAN G, JAYAWEERA P, BAO J, et al. Effect of coal contaminants on solid oxide fuel system performance and service life [R]. Menlo Park: SRI International, 2008.
[105]
KRISHNAN G. Effect of coal contaminants on SOFC cell performance [C] //8th Annual SECA Workshop, San Antonio, 2007: 1–23.
[106]
MARINA O A, PEDERSON L R, EDWARDS D J, et al. SOFC operation on hydrogen and coal gas in the presence of phosphorus, arsenic and sulfur impurities [C] //8th Annual SECA Workshop, San Antonio, 2007: 1–22.
[107]

CAYAN F N, ZHI M, PAKALAPATI S R, et al. Effects of coal syngas impurities on anodes of solid oxide fuel cells [J]. Journal of Power Sources, 2008, 185(2): 595–602.

[108]

DE ANGELIS S, JØRGENSEN P S, TSAI E H R, et al. Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography [J]. Journal of Power Sources, 2018, 383: 72–79.

[109]

LAY-GRINDLER E, LAURENCIN J, VILLANOVA J, et al. Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation [J]. Journal of Power Sources, 2014, 269: 927–936.

[110]

SHRI PRAKASH B, SENTHIL KUMAR S, ARUNA S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review [J]. Renewable and Sustainable Energy Reviews, 2014, 36: 149–179.

[111]

CHEN H Y, YU H C, SCOTT CRONIN J, et al. Simulation of coarsening in three-phase solid oxide fuel cell anodes [J]. Journal of Power Sources, 2011, 196(3): 1333–1337.

[112]

VASSEN R, SIMWONIS D, STÖVER D. Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells [J]. Journal of Materials Science, 2001, 36(1): 147–151.

[113]

LEE J H, MOON H, LEE H W, et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet [J]. Solid State Ionics, 2002, 148(1/2): 15–26.

[114]

JIANG S P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells [J]. Journal of Materials Science, 2003, 38(18): 3775–378.

[115]

SEHESTED J, GELTEN J A P, HELVEG S. Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants [J]. Applied Catalysis A: General, 2006, 309(2): 237–246.

[116]

MASON J, CELIK I, LEE S, et al. Performance degradation predictions based on microstructural evolution due to grain coarsening effects in solid oxide fuel cell electrodes [J]. Journal of The Electrochemical Society, 2018, 165(2): F64–F74.

[117]

HAUCH A, MOGENSEN M, HAGEN A. Ni/YSZ electrode degradation studied by impedance spectroscopy — Effect of p(H2O) [J]. Solid State Ionics, 2011, 192(1): 547–551.

[118]

KRÖLL L, DE HAART L, VINKE I, et al. Degradation mechanisms in solid-oxide fuel and electrolyzer cells: analytical description of nickel agglomeration in a Ni/YSZ electrode [J]. Physical Review Applied, 2017, 7(4): 044007.

[119]

LEE Y H, MUROYAMA H, MATSUI T, et al. Degradation of nickel-yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions [J]. Journal of Power Sources, 2014, 262: 451–456.

[120]

HAGEN A, BARFOD R, HENDRIKSEN P V, et al. Degradation of anode supported SOFCs as a function of temperature and current load [J]. Journal of The Electrochemical Society, 2006, 153(6): A1165–A1171.

[121]

SEHESTED J, GELTEN J A P, REMEDIAKIS I N, et al. Sintering of nickel steam-reforming catalysts: Effects of temperature and steam and hydrogen pressures [J]. Journal of Catalysis, 2004, 223(2): 432–443.

[122]

SEHESTED J. Four challenges for nickel steam-reforming catalysts [J]. Catalysis Today, 2006, 111(1/2): 103–110.

[123]

JIAO Z, TAKAGI N, SHIKAZONO N, et al. Study on local morphological changes of nickel in solid oxide fuel cell anode using porous Ni pellet electrode [J]. Journal of Power Sources, 2011, 196(3): 1019–1029.

[124]

HOLZER L, IWANSCHITZ B, HOCKER T, et al. Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres [J]. Journal of Power Sources, 2011, 196(3): 1279–1294.

[125]

NIKOLOPOULOS P, SOTIROPOULOU D. Wettability between zirconia ceramics and the liquid metals copper, nickel and cobalt [J]. Journal of Materials Science, 1987, 6(12): 1429–1430.

[126]

TSOGA A, NAOUMIDIS A, NIKOLOPOULOS P. Wettability and interfacial reactions in the systems NiYSZ and Ni/Ti-TiO2/YSZ [J]. Acta Materialia, 1996, 44(9): 3679–3692.

[127]

HUBERT M, LAURENCIN J, CLOETENS P, et al. Impact of Nickel agglomeration on Solid Oxide Cell operated in fuel cell and electrolysis modes [J]. Journal of Power Sources, 2018, 397: 240–251.

[128]

CHEN-WIEGART Y K, KENNOUCHE D, SCOTT CRONIN J, et al. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes [J]. Applied Physics Letters, 2016, 108(8): 083903.

[129]

DRISCOLL D R, MCINTYRE M D, WELANDER M M, et al. Enhancement of high temperature metallic catalysts: Aluminum titanate in the nickel-zirconia system [J]. Applied Catalysis A: General, 2016, 527: 36–44.

[130]

KRÖLL L, DE HAART L G J, VINKE I, et al. Degradation mechanisms in solid-oxide fuel and electrolyzer cells: analytical description of nickel agglomeration in a Ni/YSZ electrode [J]. Physical Review Applied, 2017, 7(4): 044007.

[131]
MOGENSEN M B, CHEN M, FRANDSEN H L, et al. Review of Ni migration in SOC electrodes [C] //the 14th European SOFC & SOE Forum, Lucerne, 2020: 1–9.
[132]

MOGENSEN M B, HAUCH A, SUN X, et al. Relation between Ni particle shape change and Ni migration in Ni-YSZ electrodes-A hypothesis [J]. Fuel Cells, 2017, 17(4): 434–441.

[133]

THE D, GRIESHAMMER S, SCHROEDER M, et al. Microstructural comparison of solid oxide electrolyser cells operated for 6100 h and 9000 h [J]. Journal of Power Sources, 2015, 275: 901–911.

[134]

FREY C E, FANG Q, SEBOLD D, et al. A detailed post mortem analysis of solid oxide electrolyzer cells after long-term stack operation [J]. Journal of The Electrochemical Society, 2018, 165(5): F357–F364.

[135]

MENZLER N H, SEBOLD D, ZISCHKE S. SOC degradation: long-term and small-scale effects [J]. ECS Transactions, 2019, 91(1): 719–729.

[136]

SUN X, HENDRIKSEN P V, MOGENSEN M B, et al. Degradation in solid oxide electrolysis cells during long term testing [J]. Fuel Cells, 2019, 19(6): 740–747.

[137]

GRAVES C, EBBESEN S D, JENSEN S H, et al. Eliminating degradation in solid oxide electrochemical cells by reversible operation [J]. Nature Materials, 2015, 14(2): 239–244.

[138]

OVTAR S, TONG X, BENTZEN J J, et al. Boosting the performance and durability of Ni/YSZ cathode for hydrogen production at high current densities via decoration with nano-sized electrocatalysts [J]. Nanoscale, 2019, 11(10): 4394–4406.

[139]

SCHEFOLD J, BRISSE A, POEPKE H. 23, 000 h steam electrolysis with an electrolyte supported solid oxide cell [J]. International Journal of Hydrogen Energy, 2017, 42(19): 13415–13426.

[140]

PRAKASH B S, KUMAR S S, ARUNA S J R, et al. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review [J]. Renewable and Sustainable Energy Review, 2014, 36: 149–179.

[141]

FAES A, NAKAJO A, HESSLER-WYSER A, et al. Redox study of anode-supported solid oxide fuel cell [J]. Journal of Power Sources, 2009, 193(1): 55–64.

[142]

SHIMURA T, JIAO Z, HARA S, et al. Quantitative analysis of solid oxide fuel cell anode microstructure change during redox cycles [J]. Journal of Power Sources, 2014, 267: 58–68.

[143]

FOUQUET D, MÜLLER A C, WEBER A, et al. Kinetics of oxidation and reduction of Ni/YSZ cermets [J]. Ionics, 2003, 9(1/2): 103–108.

[144]

HOLZER L, IWANSCHITZ B, HOCKER T, et al. Redox cycling of Ni-YSZ anodes for solid oxide fuel cells: Influence of tortuosity, constriction and percolation factors on the effective transport properties [J]. Journal of Power Sources, 2013, 242: 179–194.

[145]

CASSIDY M, LINDSAY G, KENDALL K. The reduction of nickel zirconia cermet anodes and the effects on supported thin electrolytes [J]. Journal of Power Sources, 1996, 61(1/2): 189–192.

[146]

SONG B, RUIZ-TREJO E, BERTEI A, et al. Quantification of the degradation of Ni-YSZ anodes upon redox cycling [J]. Journal of Power Sources, 2018, 374: 61–68.

[147]

SARANTARIDIS D, CHATER R, ATKINSON A. Changes in physical and mechanical properties of SOFC Ni-YSZ composites caused by redox cycling [J]. Journal of The Electrochemical Society, 2008, 155(5): B467–B472.

[148]

FAES A, JEANGROS Q, WAGNER J B, et al. In situ reduction and oxidation of nickel from solid oxide fuel cells in a transmission electron microscope [J]. ECS Transactions, 2009, 25(2): 1985–1992.

[149]

ATKINSON A, SELCUK A. Mechanical behaviour of ceramic oxygen ion-conducting membranes [J]. Solid State Ionics, 2000, 134(1/2): 59–66.

[150]

PIHLATIE M, KAISER A, MOGENSEN M. Mechanical properties of NiO/Ni-YSZ composites depending on temperature, porosity and redox cycling [J]. Journal of the European Ceramic Society, 2009, 29(9): 1657–1664.

[151]

GRAHL-MADSEN L, LARSEN P H, BONANOS N, et al. Mechanical strength and electrical conductivity of Ni-YSZ cermets fabricated by viscous processing [J]. Journal of Materials Science, 2006, 41(4): 1097–1107.

[152]

PIHLATIE M, RAMOS T, KAISER A. Testing and improving the redox stability of Ni-based solid oxide fuel cells [J]. Journal of Power Sources, 2009, 193(1): 322–330.

[153]

PIHLATIE M, KAISER A, MOGENSEN M B. Electrical conductivity of Ni-YSZ composites: Variants and redox cycling [J]. Solid State Ionics, 2012, 222: 38–46.

[154]

LAURENCIN J, DELETTE G, SICARDY O, et al. Impact of 'redox' cycles on performances of solid oxide fuel cells: Case of the electrolyte supported cells [J]. Journal of Power Sources, 2010, 195(9): 2747–2753.

[155]

SUMI H, KISHIDA R, KIM J Y, et al. Correlation between microstructural and electrochemical characteristics during redox cycles for Ni-YSZ anode of SOFCs [J]. Journal of The Electrochemical Society, 2010, 157(12): B1747–B1752.

[156]

BERTEI A, RUIZ-TREJO E, TARIQ F, et al. Validation of a physically-based solid oxide fuel cell anode model combining 3D tomography and impedance spectroscopy [J]. International Journal of Hydrogen Energy, 2016, 41(47): 22381–22393.

[157]

CHEN J, BERTEI A, RUIZ-TREJO E, et al. Characterization of degradation in nickel impregnated scandia-stabilize zirconia electrodes during isothermal annealing [J]. Journal of The Electrochemical Society, 2017, 164(9): F935–F943.

[158]

BERTEI A, RUIZ-TREJO E, KAREH K, et al. The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes [J]. Nano Energy, 2017, 38: 526–536.

[159]

FAES A, WUILLEMIN Z, TANASINI P, et al. Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part II: Electrical, electrochemical and microstructural characterization of tape-cast cells [J]. Journal of Power Sources, 2011, 196(21): 8909–8917.

[160]

MOGENSEN M B, CHEN M, FRANDSEN H L, et al. Reversible solid-oxide cells for clean and sustainable energy [J]. Clean Energy, 2019, 3(3): 175–201.

[161]

FAES A, WUILLEMIN Z, TANASINI P, et al. Redox stable Ni-YSZ anode support in solid oxide fuel cell stack configuration [J]. Journal of Power Sources, 2011, 196(7): 3553–3558.

[162]

BLENNOW P, HANSEN K K, WALLENBERG L R, et al. Strontium titanate-based composite anodes for solid oxide fuel cells [J]. ECS Transactions, 2008, 13(26): 181–194.

[163]

JIA L, LU Z, MIAO J, et al. Effects of pre-calcined YSZ powders at different temperatures on Ni-YSZ anodes for SOFC [J]. Journal of Alloys and Compounds, 2006, 414(1/2): 152–157.

[164]

PIHLATIE M, KAISER A, LARSEN P H, et al. Dimensional behavior of Ni-YSZ composites during redox cycling [J]. Journal of The Electrochemical Society, 2008, 156(3): B322–B329.

[165]

LI C X, LI C J, GUO L J. Effect of composition of NiO/YSZ anode on the polarization characteristics of SOFC fabricated by atmospheric plasma spraying [J]. International Journal of Hydrogen Energy, 2010, 35(7): 2964–2969.

[166]

PIHLATIE M, KAISER A, MOGENSEN M. Redox stability of SOFC: Thermal analysis of Ni-YSZ composites [J]. Solid State Ionics, 2009, 180(17): 1100–1112.

[167]

CHEN M, LIU Y L, BENTZEN J J, et al. Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current [J]. Journal of The Electrochemical Society, 2013, 160(8): F883–F891.

[168]

TAO Y, EBBESEN S D, MOGENSEN M B. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities [J]. Journal of Power Sources, 2016, 328: 452–462.

Journal of Ceramics
Pages 759-779
Cite this article:
SHAO Q, LUO L, GUAN C, et al. Research Progress on the Long-term Stability of Ni-YSZ Fuel Electrodes in Solid Oxide Cells. Journal of Ceramics, 2022, 43(5): 759-779. https://doi.org/10.13957/j.cnki.tcxb.2022.05.003
Metrics & Citations  
Article History
Copyright
Return