Silicon nitride ceramics have become the most promising advanced ceramic materials, because of their excellent mechanical, thermal and biological properties. The key sintering technologies of silicon nitride ceramics are discussed, while the principle, advantages and disadvantages of various sintering technologies are analyzed. With considering the latest development of silicon nitride ceramic materials, their latest applications, as high strength and toughness structural ceramics, high thermal conductivity and wave permeability ceramics, and good biocompatibility of bioceramics in aerospace, national defense, semiconductor packaging, biomedicine and other fields, are reviewed.
RILEY F L. Silicon nitride and related materials [J]. Journal of the American Ceramic Society, 2000, 83(2): 245–265.
GIACHELLO A, POPPER P. Post-sintering of reaction-bonded silicon nitride [J]. Ceramics International, 1979, 5(3): 110–114.
HYUGA H, ZHOU Y, KUSANO D, et al. Nitridation behaviors of silicon powder doped with various rare earth oxides [J]. Journal of the Ceramic Society Japan, 2011, 119(1387): 251–253.
HYUGA H, YOSHIDA K, KONDO N, et al. Nitridation enhancing effect of ZrO2 on silicon powder [J]. Materials Letters, 2008, 62(20): 3475–3477.
HYUGA H, YOSHIDA K, KONDO N, et al. Fabrication of pressureless sintered dense β-Sialon via a reaction-bonding route with ZrO2 addition [J]. Ceramics International, 2009, 35(5): 1927–1932.
ZHU X W, ZHOU Y, HIRAO K, et al. Processing and thermal conductivity of sintered reaction-bonded silicon nitride: (Ⅱ) Effects of magnesium compound and yttria additives [J]. Journal of the American Ceramic Society, 2007, 90(6): 1684–1692.
JENNINGS H M. On reactions between silicon and nitrogen [J]. Journal of Materials Science, 1983, 18(4): 951–967.
ZHU X W, SAKKA Y, ZHOU Y, et al. Effect of MgSiN2 addition on gas pressure sintering and thermal conductivity of silicon nitride with Y2O3 [J]. Journal of the Ceramic Society of Japan, 2008, 116(1354): 706–711.
ZHOU Y, ZHU X W, HIRAO K, et al. Sintered reaction-bonded silicon nitride with high thermal conductivity and high strength [J]. International Journal of Applied Ceramic Technology, 2008, 5(2): 119–126.
ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity [J]. Advanced Materials, 2011, 23(39): 4563–4567.
KUSANO D, HYUGA H, ZHOU Y, et al. Effect of aluminum content on mechanical properties and thermal conductivities of sintered reaction-bonded silicon nitride [J]. International Journal of Applied Ceramic Technology, 2014, 11(3): 534–542.
LIU D M, CHEN C J, LEE R R. Thermal diffusivity/conductivity in Sialon ceramics [J]. Journal of Applied Physics, 1995, 77(2): 494–496.
DEELEY G G, HERBERT J M, MOORE N C. Dense silicon nitride [J]. Powder Metallurgy, 1961, 4(8): 145–151.
GAZZA G E. Effect of yttria additions on hot-pressed Si3N4 [J]. American Ceramic Society Bulletin, 1975, 54(9): 778–781.
GIACHELLO A, MARTINENGO P C, TOMMASINI G, et al. Fabrication and properties of a pressureless sintered silicon nitride based on Y2O3 as sintering aid [J]. American Ceramic Society Bulletin, 1980, 59: 1212–1215.
PENG G H, LIANG R H, LU R Q, et al. Fabrication of high thermal conductivity β-Si3N4 ceramics at relatively low temperature using MgSiN2 as additives [J]. Key Engineering Materials, 2010, 434–435: 783–786.
GAVRISH A M, PUCHKOV A B, BOYARINA I L, et al. Formation of β′-Sialon in the system Si3N4-Al2O3-AlN [J]. Refractories, 1988, 29: 477–479.
JACK K H. Significance of structure and phase equilibria in the development of silicon nitride and Sialon ceramics [J]. Science of Ceramics, 1981, 11: 125–142.
WASANAPIARNPONG T, WADA S, IMAI M, et al. Lower temperature pressureless sintering of Si3N4 ceramics using SiO2-MgO-Y2O3 additives without packing powder [J]. Journal of the Ceramic Society of Japan, 2006, 114(1333): 733–738.
LIU X J, HUANG Z Y, GE Q M, et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive [J]. Journal of the European Ceramic Society, 2005, 25(14): 3353–3359.
MATOVIC B, RIXECKER G, ALDINGER F. Densification of Si3N4 with LiYO2 additive [J]. Journal of the American Ceramic Society, 2010, 87(4): 546–549.
MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO-Al2O3-SiO2 glass as sintering aid [J]. Ceramics International, 2017, 43(13): 10123–10129.
PENAS O, ZENATI R, DUBOIS J, et al. Processing, microstructure, mechanical properties of Si3N4 obtained by slip casting and pressureless sintering [J]. Ceramics International, 2001, 27(5): 591–596.
ZENG W M, GAN X P, LI Z Y, et al. The preparation of silicon nitride ceramics by gelcasting and pressureless sintering [J]. Ceramics International, 2016, 42(10): 11593–11597.
BECHER P F, PAINTER G S, SUN E Y, et al. The importance of amorphous intergranular films in self-reinforced Si3N4 ceramics [J]. Acta Materialia, 2000, 48(18-19): 4493–4499.
CHOI H J, LEE J G, KIM Y W. Oxidation behavior of hot-pressed Si3N4 with Re2O3 (Re=Y, Yb, Er, La) [J]. Journal of the European Ceramic Society, 1999, 19(16): 2757–2762.
MITOMO M. Pressure sintering of Si3N4 [J]. Journal of Materials Science, 1976, 11(6): 1103–1107.
BECHER P F, LIN H T, HWANG S L, et al. The influence of microstructure on the mechanical behavior of silicon nitride ceramics [J]. MRS Online Proceeding Library, 1992, 287: 147–158.
KITAYAMA M, HIRAO K, KANZAKI S. Effect of rare earth oxide additives on the phase transformation rates of Si3N4 [J]. Journal of the American Ceramic Society, 2010, 89(8): 2612–2618.
HAMPSHIRE S, JACK K H. The kinetics of densification and phase transformation of nitrogen ceramics [J]. Proceedings of the British Ceramic Society, 1981, 31: 37–49.
KITAYAMA M. Anisotropic Ostwald ripening in silicon nitride: On the reaction-controlled kinetics [J]. Materials Science Forum, 2010, 638–642: 2598–2603.
KITAYAMA M, HIRAO K, TORIYAMA M, et al. Experimental evidence for the anisotropic Ostwald ripening of β-silicon nitride [J]. Journal of the American Ceramic Society, 2010, 82(10): 2931–2933.
HAMPSHIRE S, JACK K H. Progress in Nitrogen Ceramics [M]. Dordrecht: Springer Netherlands, 1983.
LAI K R, TIEN T Y. Kinetics of β-Si3N4 grain growth in Si3N4 ceramics sintered under high nitrogen pressure [J]. Journal of the American Ceramic Society, 1993, 76(1): 91–96.
GRESKOVICH C. Preparation of high-density Si3N4 by a gas-pressure sintering process [J]. Journal of the American Ceramic Society, 1981, 64(12): 725–730.
SHIBATA N, PENNYCOOK S J, GOSNELL T R, et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions [J]. Nature, 2004, 428(6984): 730–733.
BECHER P F, PAINTER G S, SHIBATA N, et al. Effects of rare-earth (RE) intergranular adsorption on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with RE2O3+MgO additives: RE= La, Gd, and Lu [J]. Journal of the American Ceramic Society, 2008, 91(7): 2328–2336.
ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity [J]. Journal of the European Ceramic Society, 2014, 34(10): 2585–2589.
KIM Y W, MITOMO M, HIROSAKI N. R-curve behaviour and microstructure of sintered silicon nitride [J]. Journal of Materials Science, 1995, 30(20): 5178–5184.
BELMONTE M, GONZÁLEZ-JULIÁN J, MIRANZO P, et al. Spark plasma sintering: A powerful tool to develop new silicon nitride-based materials [J]. Journal of the European Ceramic Society, 2010, 30(14): 2937–2946.
OMORI M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) [J]. Materials Science and Engineering: A, 2000, 287(2): 183–188.
SONG X Y, LIU X M, ZHANG J X. Science in China Ser. E: Engineering & Materials Science, 2005, 35(5): 459–469.
SHEN Z J, NYGREN M. Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering [J]. Journal of Materials Chemistry, 2000, 11(1): 204–207.
HERRMANN M, SHEN Z J, SCHULZ I, et al. Silicon nitride nanoceramics densified by dynamic grain sliding [J]. Journal of Materials Research, 2010, 25(12): 2354–2361.
NISHIMURA T, MITOMO M, HIROTSURU H, et al. Fabrication of siliconnitride nano-ceramics by spark plasma sintering [J]. Journal of Materials Science Letters, 1995, 14(15): 1046–1047.
RATZKER B, SOKOL M, KALABUKHOV S, et al. High-pressure spark plasma sintering of silicon nitride with LiF additive [J]. Journal of the European Ceramic Society, 2018, 38(4): 1271–1277.
LUKIANOVA O A, NOVIKOV V Y, PARKHOMENKO A A, et al. Microstructure of spark plasma-sintered silicon nitride ceramics [J]. Nanoscale Research Letters, 2017, 12(1): 293–299.
LI J L, CHEN F, NIU J Y. Low temperature sintering of Si3N4 ceramics by spark plasma sintering technique [J]. Advances in Applied Ceramics, 2013, 1(110): 20–24.
JEONG K, TATAMI J, IIJIMA M, et al. Spark plasma sintering of silicon nitride using nanocomposite particles [J]. Advanced Powder Technology, 2017, 28(1): 37–42.
XIE Z P, LI S, AN L N. A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics [J]. Journal of the American Ceramic Society, 2014, 97(4): 1012–1015.
LI S, WEI C C, ZHOU L J, et al. Microstructure and fracture strength of silicon nitride ceramics consolidated by oscillatory pressure sintering [J]. Ceramics International, 2019, 45(12): 15671–15675.
HAN Y, XIE Z P, LI S, et al. Optimum sintering temperature of high quality silicon nitride ceramics under oscillatory pressure [J]. Ceramics International, 2018, 44(6): 6949–6952.
QIN X W, LI S, ZHAO L, et al. Silicon nitride ceramics consolidated by oscillatory pressure sintering [J]. Ceramics International, 2020, 46(9): 14235–14240.
XIE Z P, QIN X W, AN D, et al. Journal of ceramics, 2019, 40(1): 1–13.
WU Q W, HU F, XIE Z P. Journal of ceramics, 2018, 39(1): 13–19.
TIAN X, ZHAO J, ZHU N, et al. Preparation and characterization of Si3N4/(W, Ti)C nano-composite ceramic tool materials [J]. Materials Science and Engineering A, 2013, 596(23): 255–263.