The development and preparation of high-performance electrolyte materials will promote the commercialization of proton conductor solid oxide fuel cell (PCFC). BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) is a promising PCFC electrolyte material, which has sufficient chemical stability and high ionic conductivity in low and intermediate temperature range (400–700 ℃). However, the low sintering activity of BZCYYb hinders its application in PCFC. BZCYYb powder was synthesized by using an improved Pechini method, with inorganic salt Li2CO3 as the sintering aid, which was introduced using a mechanical ball milling mixing process. The addition of Li2CO3 significantly promoted densification process of the electrolyte, without changing the crystalline structure and phase composition of BZCYYb. After adding 8 mol%Li2CO3 and sintering at 1350 ℃ for 3 h, the sample exhibited relative density and linear shrinkage of 95.37% and 17.90%, respectively. The sample with 8 mol% Li2CO3 had the highest conductivity in wet hydrogen gas, reaching 1.922×10-2 S·cm-1 at 700 ℃, while the BZCYYb sample sintered at 1450 ℃ for 5 h had a conductivity of 1.493×10-2 S·cm-1. The introduction of an appropriate amount of Li2CO3 can significantly reduce the sintering temperature of BZCYYb, with desirable increment in the conductivity.
CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cells-fundamentals and applications [J]. Fuel Cells, 2001, 1(1): 5–39.
FABBRI E, PERGOLESI D, TRAVERSA E. Materials challenges toward proton-conducting oxide fuel cells: A critical review [J]. Chemical Society Reviews, 2010, 39(11): 4355–4369.
CAO J F, SU C, JI Y X, et al. Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells [J]. Journal of Energy Chemistry, 2021, 57(6): 406–427.
YU J F, LUO L H, CHENG L, et al. Journal of Ceramics, 2020, 41(5): 613–626.
STAMBOULI A B, TRAVERSA E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy [J]. Renewable and Sustainable Energy Reviews, 2002, 6(5): 433–455.
LIU Y, RAN R, TADE M O, et al. Structure, sinterability, chemical stability and conductivity of proton-conducting BaZr0.6M0.2Y0.2O3−δ electrolyte membranes: The effect of the Mdopant [J]. Journal of Membrane Science, 2014, 467: 100–108.
SAMMELLS A F, COOK R L, WHITE J H, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells [J]. Solid State Ionics, 1992, 52(1/2/3): 111–123.
DUAN C C, TONG J H, MENG S, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures [J]. Science, 2015, 349(6254): 1321–1326.
DING H P, XIE Y Y, XUE X J. Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte based proton-conducting solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode [J]. Journal of Power Sources, 2011, 196(5): 2602–2607.
DING H P, XIE Y Y, XUE X J. PrBa0.5Sr0.5Co2O5+δ layered perovskite cathode for intermediate temperature solid oxide fuel cells [J]. Electrochimica Acta, 2010, 55(11): 3812–3816.
SONG S X, WANG Y R, XIA C R. Journal of Inorganic Materials, 2014, 29(12): 1253–1256.
MITSUI A, MIYAYMA M, YANAGIDA H. Evaluation of the activation energy for proton conduction in perovskite-type oxides [J]. Solid State Ionics, 1987, 22(2/3): 213–217.
ZAKOWSKY N, WILLIAMSON S, IRVINE J T S. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3–δ electrolytes for fuel cells and other applications [J]. Solid State Ionics, 2005, 176(39/40): 3019–3026.
SLODCZYK A, SHARP M D, UPASEN S, et al. Combined bulk and surface analysis of the BaCe0.5Zr0.3Y0.16Zn0.04O3–δ (BCZYZ)ceramic proton-conducting electrolyte [J]. Solid State Ionics, 2014, 262: 870–874.
LI J X, LUO J L, CHUANG K T, et al. Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2 [J]. Electrochimica Acta, 2008, 53(10): 3701–3707.
PASIERB P, DROŻDŻ-CIEŚLA E, GAJERSKI R, et al. Chemical stability of Ba(Ce1−xTix)1−yYyO3 proton-conducting solid electrolytes [J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 475–480.
YANG L, WANG S, BLINN K, et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ [J]. Science, 2009, 326(5949): 126–129.
WAN Y H, HE B B, WANG R R, et al. Effect of Co doping on sinterability and protonic conductivity of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for protonic ceramic fuel cells [J]. Journal of Power Sources, 2017, 347: 14–20.
YANG K, WANG J X, XUE Y J, et al. Synthesis, sintering behavior and electrical properties of Ba(Zr0.1Ce0.7Y0.2)O3–δ and Ba(Zr0.1Ce0.7Y0.1Yb0.1)O3–δ proton conductors [J]. Ceramics International, 2014, 40(9): 15073–15081.
LIU Y, YANG L, LIU M F, et al. Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ by addition of nickel oxide [J]. Journal of Power Sources, 2011, 196(23): 9980–9984.
CHEN C C, LIU M F, BAI Y H, et al. Anode-supported tubular SOFCs based on BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte fabricated by dip coating [J]. Electrochemistry Communications, 2011, 13(6): 615–618.
BARISON S, BATTAGLIARIN M, CAVALLIN T, et al. Barium non-stoichiometry role on the properties of Ba1+xCe0.65Zr0.20Y0.15O3–δ proton conductors for IT-SOFCs [J]. Fuel Cells, 2008, 8(5): 360–368.
GUO Y M, RAN R, SHAO Z P, et al. Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of Ba1±xCe0.4Zr0.4Y0.2O3–δ (0≤x≤0.20) proton conductors [J]. International Journal of Hydrogen Energy, 2011, 36(14): 8450–8460.
IGUCHI F, TSURUI T, SATA N, et al. The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors [J]. Solid State Ionics, 2009, 180(6/7/8): 563–568.
HAILE S M, STANEFF G, RYU K H. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites [J]. Journal of Materials Science, 2001, 36: 1149–1160.
WU G C, WANG C, HEI Y F, et al. Rare Metal Materials and Engineering, 2017, 46(1): 231–236.
SCHOBER T. Composites of ceramic high-temperature proton conductors with inorganic compounds [J]. Electrochemical and Solid-State Letters, 2005, 8(4): 199–200.
ZHANG X, CHEN G, HE Y, et al. Effect of Li2CO3 and Li OHon the ionic conductivity of BaCe0.9Y0.1O3 electrolyte in SOFCs with a lithium compound electrode [J]. International Journal of Hydrogen Energy, 2021, 46(15): 9948–9956.
GUO X, MAIER J. Grain boundary blocking effect in zirconia: A schottky barrier analysis [J]. Journal of The Electrochemical Society, 2001, 148(3): 121–126.
ESPOSITO V, ZUNIC M, TRAVERSA E. Improved total conductivity of nanometric samaria-doped ceria powders sintered with molten LiNO3 additive [J]. Solid State Ionics, 2009, 180(17/18/19): 1069–1075.
ZHU B, LIU X R, ZHOU P, et al. Innovative solid carbonate-ceria composite electrolyte fuel cells [J]. Electrochemistry Communications, 2001, 3(10): 566–571.
SUN Z Q, FABBRI E, BI L, et al. Lowering grain boundary resistance of BaZr0.8Y0.2O3–δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation [J]. Physical Chemistry Chemical Physics, 2011, 13(17): 7692–7700.
LI Y, GUO R S, WANG C, et al. Stable and easily sintered BaCe0.5Zr0.3Y0.2O3–δ electrolytes using Zn O and Na2CO3 additives for protonic oxide fuel cells [J]. Electrochimica Acta, 2013, 95: 95–101.
FAN L, WANG C, DI J, et al. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells [J]. Journal of Nanoscience and Nanotechnology, 2012, 12(6): 4941–4945.
LUO X Y, ZHAO M Y, XIE H, et al. Chinese Journal of Rare Metals, 2020, 44(4): 410–418.
GAO D Y, GUO R S. Rare Metal Materials and Engineering, 2009, 38(S2): 696–699.
HE Y, CHEN G, ZHANG X, et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode [J]. ACS Applied Energy Materials, 2020, 3(5): 4134–4138.
BARIN I, PLATZKI G. Thermochemical data of pure substances [M]. Weinheim: VCH Verlags-gesellschaft, 1989.
PASIERB P, GAJERSKI R, ROKITA M, et al. Studies on the binary system Li2CO3-BaCO3 [J]. Physica B, 2001, 304(1): 463–476.
PASIERB P, GAJERSKI R, KOMORNICKI S, et al. Structural properties and thermal behavior of Li2CO3-BaCO3 system by DTA, TG and XRD measurements [J]. Journal of Thermal Analysis and Calorimetry, 2001, 65(2): 457–466.
TONG J X, ZHANG Q L, YANG H, et al. Journal of the Chinese Ceramic Society, 2006, 34(11): 1335–1340.
GUO Q Q, DAI L, WU Y L, et al. Journal of Functional Materials, 2009, 40(1): 101–106.
LI Y H, YANG W J, WANG L, et al. Improvement of sinterability of BaZr0.8Y0.2O3–δ for H2 separation using Li2O/ZnO dual-sintering aid [J]. Ceramics International, 2018, 44(13): 15935–15943.
MA G Q, WEN Z Y, HAN J D, et al. Enhanced proton conduction of BaZr0.9Y0.1O3–δ by hybrid doping of Zn O and Na3PO4 [J]. Solid State Ionics, 2015, 281: 6–11.
MA N, ZHANG B P, LI H T, et al. Rare Metal Materials and Engineering, 2011, 40(S1): 395–398.
YOU H W, KOH J H. Low temperature sintering of Li2CO3 added (Ba,Sr)TiO3 ceramics [J]. Integrated Ferroelectrics, 2006, 86(1): 59–65.
TSAI C L, KOPCZYK M, SMITH R J, et al. Low temperature sintering of Ba(Zr0.8−xCexY0.2)O3–δ using lithium fluoride additive [J]. Solid State Ionics, 2010, 181(23/24): 1083–1090.
BRZOZOWSKI E, CASTRO M S. Lowering the synthesis temperature of high-purity BaTiO3 powders by modifications in the processing conditions [J]. Thermochimica Acta, 2003, 398(1/2): 123–129.
TIWARI V, SRIVASTAVA G. The effect of Li2CO3 addition on the structural, dielectric and piezoelectric properties of PZTceramics [J]. Ceramics International, 2015, 41(2): 2774–2778.
SIDDIQUI M, MOHAMED J J, AHMAD Z A. Piezoelectric and dielectric properties of Pb0.93La0.02Sr0.05(Zr0.52Ti0.48)O3 ceramics doped with Li2CO3 at low sintering temperature [J]. Ceramics International, 2017, 43(2): 2644–2649.
FAN G F, SHI M B, LU W Z, et al. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics [J]. Journal of the European Ceramic Society, 2014, 34(1): 23–28.
BENAMIRA M, ALBIN V, RINGUEDÉ A, et al. Structural and electrical properties of gadolinia-doped ceria mixed with alkali earth carbonates for SOFC applications [J]. ECS Transactions, 2007, 7(1): 2261–2268.
LAO X B, XU X Y, JIANG W H, et al. China Ceramics, 2018, 54(11): 16–22.
YANG Z B, ZHU T L, XIANG W L, et al. Journal of Inorganic Materials, 2015, 30(4): 345–350.
HAILE S M, WEST D L, CAMPBELL J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate [J]. Journal of Materials Research, 1998, 13(6): 1576–1595.
WANG H, PENG R R, WU X F, et al. Sintering behavior and conductivity study of yttrium-doped BaCeO3-BaZrO3 solid solutions using Zn O additives [J]. Journal of the American Ceramic Society, 2009, 92(11): 2623–2629.