Thermal barrier coating has good thermal insulation effect and high temperature oxidation resistance, which can significantly increase the service temperature and life of high temperature components in aeroengines. The development of advanced aeroengine has put forward higher requirements for the protective effect and service life of ceramic thermal barrier coating materials. The research progress of thermal barrier coating system for advanced aeroengine is reviewed. The ceramic layer and bond layer material system and preparation technology of thermal barrier coating at home and abroad in recent years are described in detail, while the failure of coating is analyzed. The research and application prospect of the next generation high-performance thermal barrier coatings for aeroengine are prospected.
LIU D X. Journal of Aerospace Power, 2001,16(1): 1–6.
JIAO H B, MO S. Aeronautical Manufacturing Technology, 2015(12): 62–65.
GAO J S, CHEN S D. Aerodynamic Missiles Journal, 2014, (1): 54–59.
LUO G X, CHEN Z L, CHEN T. Aviation Maintenance & Engineering, 1994(2): 20–22.
PARAMESWARAN V R, IMMARIGEON J P, NAGY D. Titanium nitride coating for aero engine compressor gas path components [J].Surface and Coatings Technology, 1992, 3(52): 251–260.
ZHOU D P, PENG H, ZHU L, et al. Microstructure, hardness and corrosion behavior of Ti/TiN multilayer coatings produced by plasma activated EB-PVD [J]. Surface and Coatings Technology, 2014, 258: 102–107.
BORAWSKI B, TODD J A, SINGH J, et al. The influence of ductile interlayer material on the particle erosion resistance of multilayered TiN based coatings [J]. Wear, 2011, 271(11): 2890–2898.
LI Y J, WU N, PUCHKOV P U. Aeronautical Manufacturing Technology, 2010(9): 43–47.
FAN M Q, FU B Y, WANG R J. Welding& Joining, 2015(4): 21–26.
XING Y Z, HAO J M. Foundry Technology, 2009, 30(7): 922–925.
XU H B, GONG S K, LIU F S. Acta Aeronautica et Astronautica Sinca, 2000, 21(1): 7–12.
TZIMAS E, MVLLEJANS H, PETEVES S D, et al. Failure of thermal barrier coating systems under cyclic thermo-mechanical loading [J]. Acta Materialia, 2000, 48: 4699–4707.
EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Progress in Materials Science, 2001, 46(5): 505–553.
SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma sprayed thermal barrier coatings [J]. Materials Science and Engineering, 2003, 342(1/2): 120–130.
SPITSBERG I T, MUMM D R, EVANS A G. On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings [J]. Materials Science and Engineering: A, 2005, 394(1): 176–191.
ZHOU H M, YI D Q, YU Z M, et al. Materials Reports, 2006, 20(3): 4–8.
BAI Y, FAN W, LIU K, et al. Gradient La2Ce2O7/YSZ thermal barrier coatings tailored by synchronous dual powder feeding system [J]. Materials Letters, 2018, 219: 55–58.
CHEN X L, GU L J, ZOU B L, et al. New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying [J]. Surface and Coatings Technology, 2012, 206(8): 2265–2274.
WANG Z, WANG L, LIU S Y, et al. China Surface Engineering, 2016, 29(1): 16–24.
CZECH N, FIETZEK H, JUEZ-LORENZO M, et al. Studies of the bond coat oxidation and phase structure of TBCs [J]. Surface and Coatings Technology, 1999, 113(1/2): 157–164.
XIE D B, WANG F H. Materials Reports, 2002, 16(3): 7–10.
ZHANG Y J, ZHANG Y C, SUN X F, et al. Material Protection, 2004, 37(6): 26–29.
WITZ G, SCHAUDINN M, SOPKA J, et al. Development of advanced thermal barrier coatings with improved temperature capability [J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(8): 081901.
WU S, ZHAO Y T, LI W G, et al. Journal of Harbin Engineering University, 2022, 43(1): 139–150.
CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coating [J]. Journal of the European Ceramic Society, 2004, 24(1): 1–10.
VASSEN R, CAO X Q, TIETZ F, et al. Zirconates as new materials for thermal barrier coatings [J]. Journal of the American Ceramic Society, 2000, 83(8): 2023–2028.
FERGUS W J. Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines [J]. Metallurgical and Materials Transactions E, 2014, 1(2): 118–131.
YAMANAKA S, KUROSAKI K, OYAMA T, et al. Thermophysical properties of perovskite-type strontium cerate and zirconate [J]. Journal of the American Ceramic Society, 2005, 88(6): 1496–1499.
WAN C L, QU Z X, DU A B, et al. Influence of Bsite substituent Ti on the structure and thermophysical properties of A2B2O7-type pyrochlore Gd2Zr2O7 [J]. Acta Materialia, 2009, 57(16): 4782–4789.
ZHANG Y L, GUO L, YANG Y P, et al. Influence of Gd2O3and Yb2O3co-doping on phase stability, thermo-physical properties and sintering of 8YSZ [J]. Chinese Journal of Aeronautics, 2012, 25(6): 948–953.
BANSAL N P, ZHU D. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings [J]. Surface and Coatings Technology, 2008, 202(12): 2698–2703.
XIE X Y, GUO H B, GONG S K, et al. Lanthanumtitanium-aluminum oxide: a novel thermal barrier coating material for applications at 1300 ℃ [J]. Journal of the European Ceramic Society, 2011, 31(9): 1677–1683.
XIE X Y, GUO H B, GONG S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings [J]. Journal of Thermal Spray Technology, 2010, 19(6): 1179–1185.
XIE X Y, GUO H B, GONG S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame [J]. Surface and Coatings Technology, 2011, 205(17): 4291–4298.
HAO W W, ZHENG L, GUO H B, et al. Acta Aeronautica et Astronautica Sinca, 2013, 34(6): 1485–1492.
WANG J K, CHEN L, WU P, et al. Journal of Xiangtan University (Natural Science Edition), 2019, 41(6): 69–87.
ZHU D M, MILLER R A. Development of advanced low conductivity thermal barrier coatings [J]. International Journal of Applied Ceramic Technology, 2004, 1(1): 86–94.
GUO L, GUO H B, GONG S K, et al. Improvement on thephase stability, mechanical properties and thermal insulation of Y2O3-stabilized ZrO2 by Gd2O3and Yb2O3 co-doping [J]. Ceramics International, 2013, 39(8): 9009–9015.
JI X J, GONG S K, XU H B, et al. Acta Aeronautica et Astronautica Sinca, 2007, 28(10): 196–200.
SUN L L, GUO H B, PENG H, et al. Influence of partial substitution of Sc2O3 withGd2O3 on the phase stability andthermal conductivity of Sc2O3-doped ZrO2 [J]. Ceramics International, 2013, 39(3): 3447–3451.
SONG X W, YU H T, NIU X Q, et al. Journal of Inner Mongolia University of Science and Technology, 2009, 28(3): 287–292.
SUN Z F, LIU H F, WANG Y L. Acta Materiae Compositae Sinica, 2015, 32(5): 1381–1389.
AHMADI-PIDANI R, SHOJA-RAZAVI R, MOZAFRINIA R, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification [J]. Optics and Lasers in Engineering, 2012, 50(5): 780–786.
SONG X W, XIE M, MU R D, et al. Influence of the partial substitution of Y2O3 with Ln2O3 (Ln = Nd, Sm, Gd) on the phase structure and thermophysical properties of ZrO2-Nb2O5-Y2O3 ceramics [J]. Acta Materialia, 2011, 59(10): 3895–3902.
LIMARGA A M, SHIAN S, LECKIE R M, et al. Thermal conductivity of single-and multi-phase compositions in the ZrO2-Y2O3-Ta2O5 system [J]. Journal of the European Ceramic Society, 2014, 34(12): 3085–3094.
MATSUMOTO M, KATO T, YAMAGUCHI N, et al. Thermal conductivity and thermal cycle life of La2O3and HfO2 doped ZrO2-Y2O3 coatings produced by EB-PVD [J]. Surface and Coatings Technology, 2009, 203(19): 2835–2840.
GIROLAMO G D, BLASI C, SCHIOPPA M, et al. Structure and thermal properties of heat treated plasma sprayed ceria-yttria co-stabilized zirconia coatings [J]. Ceramics International, 2010, 36(3): 961–968.
MATSUMOTO M, AOYAMA K, MATSUBARA H, et al. Thermal conductivity and phase stability of plasma sprayed ZrO2-Y2O3-La2O3 coatings [J]. Surface and Coatings Technology, 2005, 194(1): 31–35.
XUE Z L, GUO H B, GONG S K, et al. Journal of Aeronautical Materials, 2018, 38(2): 10–20.
SHI T J, ZHANG X, PENG H R, et al. Thermal Spray Technology, 2023, 15(2): 1–12.
XIANG J Y, HUANG J H, CHEN S H, et al. Journal of Aeronautical Materials, 2012, 32(5): 1–6.
CHI W G, SAMPATH S, WANG H. Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings [J]. Journal of the American Ceramic Society, 2008, 91(8): 2636–2645.
XIE M, LIU Y, LI R Y, et al. Aeronautical Manufacturing Technology, 2022, 65(3): 51–63.
MOU R D, XU Z H, HE S M, et al. Journal of Materials Engineering, 2009(7): 67–71.
GUO L, GUO H B, PENG H, et al. Thermophysical properties of Yb2O3 doped Gd2Zr2O7 and thermal cycling durability of (Gd0.9Yb0.1)2Zr2O7/YSZ thermal barrier coatings [J]. Journal of the European Ceramic Society, 2014, 34(5): 1255–1263.
BANSAL N P, ZHU D. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings [J]. Materials Science and Engineering A, 2007, 459(1): 192–195.
LIU Z G, OUYANG J H, ZHOU Y, et al. Influence of ytterbiumand samarium-oxides co-doping on structure and thermal conductivity of zirconate ceramics [J]. Journal of the European Ceramic Society, 2009, 29(4): 647–652.
LIU Z G, OUYANG J H, ZHOU Y, et al. Structural evolution and thermophysical properties of (SmxGd1-x)2Zr2O7(0≤x≤1.0) ceramics [J]. Journal of Alloys and Compounds, 2009, 472(1): 319–324.
SCHELLING P K, PHILLPOT S R, GRIMES R W. Optimum pyrochlore compositions for low thermal conductivity [J]. Philosophical Magazine Letters, 2004, 84(2): 127–137.
QU Z. X, WAN C. L, PAN W. Thermophysical properties of rare-earth stannates: Effect of pyrochlore structure [J]. Acta Materialia, 2012, 60(6): 2939–2949.
LIU B, WANG J Y, LI F Z, et al. Theoretical elastic stiffness structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore [J]. Acta Materialia, 2010, 58(13): 4369–4377.
MA W, GONG S K, XU H B, et al. On improving the phase stability and thermal expansion coefficients of lanthanum cerium oxide solid solutions [J]. Scripta Materialia, 2006, 54(8): 1505–1508.
MA W, GONG S K, XU H B, et al. The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD [J]. Surface and Coatings Technology, 2006, 200(16): 5113–5118.
DAI H, ZHONG X H, LI J Y, et al. Neodymium-cerium oxide as new thermal barrier coating material [J]. Surface and Coatings Technology, 2006, 201(6): 2527–2533.
SARAVANAN S, SRINIVAS G H, JAYARAM V, et al. Synthesis and characterization of Y3Al5O12 and ZrO2-Y2O3 thermal barrier coatings by combustion spray pyrolysis [J]. Surface and Coatings Technology, 2008, 202(19): 4653–4659.
LI W S, ZHANG Y, AN G S, et al. Rare Metal Materials and Engineering, 2019, 48(12): 3961–3968.
LI M H, WANG D R, XUE J C, et al. Preparation of pd-doped Y3Al5O12 thermal barrier coatings using cathode plasma electrolytic deposition [J]. Ceramics International, 2019, 46(6): 7019–7024.
ZHOU Y C, XIANG H M, FENG Z H. Theoretical investigation on mechanical and thermal properties of a promising thermal barrier material: Yb3Al5O12 [J]. Journal of Materials Science and Technology, 2014, 30(7): 631–638.
XUE Z L, MA Y, GONG S K, et al. Influence of Yb3+ doping on phase stability and thermophysical properties of (Y1-xYbx)3Al5O12 under high temperature [J]. Ceramics International, 2017, 43(9): 7153–7158.
XUE Z L, MA Y, GUO H B, et al. The influence of Gd doping on thermophysical properties, elasticity modulus and phase stability of garnet-type (Y1-xGdx)3Al5O12ceramics [J]. Journal of the European Ceramic Society, 2017, 37(13): 4171–4177.
WANG Y H, LIU Z G, OOYANG J H, et al. Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12 ceramic composites [J]. Ceramics International, 2011, 37(7): 2489–2493.
PENG P, ZHANG L, YU X, et al. Journal of Synthetic Crystals, 2010, 39(4): 993–996.
SU Y J, TRICE R W, FABER K T, et al. Thermal conductivity, phase stability, and oxidation resistance of Y3Al5O12(YAG)/Y2O3-ZrO2(YSZ) thermal-barrier coatings [J]. Oxidation of Metals, 2004, 61(3/4): 253–271.
QI F, FAN Z S, SUN D B, et al. Journal of Materials Engineering, 2006(7): 14–18.
DHINESHKUMAR S R, DURAUSELVAM M, NATARAJAN S, et al. Enhancement of strain tolerance of functionally graded LaTi2Al9O19 thermal barrier coating through ultra-short pulse based laser texturing [J]. Surface and Coatings Technology, 2016, 304: 263–271.
LU H R, WANG C A, HUANG Y, et al. Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substitutedLnMeAl11O19 ceramics [J]. Scientific Reports, 2014, 4: 6823.
FRIEDRICH C, GADOW R, SCHIRMER T. Lanthanum hexaaluminate—A new material for atmospheric plasma spraying of advanced thermal barrier coatings [J]. Journal of Thermal Spray Technology, 2001, 10(4): 592–598.
GADOW R, LISCHKA M. Lanthanum hexaaluminate—novel thermal barrier coatings for gas turbine applications—materials and process development [J]. Surface and Coatings Technology, 2002, 151: 392–399.
CAO X Q, ZHANG Y F, ZHANG J F, et al. Failure ofthe plasma-sprayed coating of lanthanum hexaluminate [J]. Journal of the European Ceramic Society, 2008, 28(10): 1979–1986.
XIE X Y, GUO H B, GONG S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings [J]. Chinese Journal of Aeronautics, 2012, 25(1): 137–142.
ZHOU Y, GAN G Y, GE Z H, et al. Microstructure and thermophysical properties of CeO2-doped SmTaO4 ceramics for thermal barrier coatings [J]. Journal of Materials Research, 2020, 35(3): 242–251.
QI Z A, LIN C A, PENG S A, et al. Potential thermal barrier coating materials: RE2FeTaO7 (RE= Y, Eu, Gd, Dy) compounds [J]. Journal of Alloys and Compounds, 2021, 855: 157408.
CHEN X G, YANG S S, SONG Y, et al. Phase-structures, thermophysical properties of Sm3Ce7Ta2O23.5 and Gd3Ce7Ta2O23.5 oxides for thermal barrier coating applications [J]. Ceramics International, 2020, 46(6): 8238–8243.
CHEN X G, LU K, ZHAO L M, et al. Thermophysical properties of Ca3Ln3Ce7Ta2O26.5 (Ln=Gd and Yb) oxides for thermal barrier coating applications [J]. Ceramics International, 2020, 46(9): 14273–14277.
ZHANG H S, YANG S S, TONG Y P, et al. Preparation, thermophysical performances of Ca3Ln3Ti7Ta2O26.5 (Ln=Yb and Y) oxides for thermal barrier coating applications [J]. Ceramics International, 2020, 46(5): 6531–6536.
ZHU J T, LOU Z H, ZHANG P, et al. Journal of Inorganic Materials, 2021, 36(4): 411–417.
FENG J, SAMUEL S, XIAO B, et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalite [J]. Physical Review B Condensed Matter and Materials Physics, 2014, 90(9): 94–102.
SHIAN S, SARIN P, GURAK M, et al. The tetragonalmonoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying [J]. Acta Materialia, 2014, 69: 196–202.
WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE=Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials [J]. Scripta Materialia, 2017, 126: 24–28.
WU P, CHONG X J, FENG J. Effect of Al3+ doping on mechanical and thermal properties of DyTaO4 as promising thermal barrier coating application [J]. Journal of the American Ceramic Society, 2018, 101(5): 1818–1823.
CHNE L, FENG J. Advanced Ceramics, 2019, 40(6): 367–397.
CHEN L, WU P, SONG P, et al. Synthesis, crystal structure and thermophysical properties of (La1-xEux)3TaO7 ceramics [J]. Ceramics International, 2018, 44(14): 16273–16281.
YE F X, YUAN Y H, YAN S, et al. High-temperature corrosion mechanism of a promising scandium tantalate ceramic for next generation thermal barrier coating under molten calciummagnesium-alumino-silicate(CMAS) [J]. Materials Chemistry and Physics, 2020, 256: 123679.
ZONG R F, WU F S, FENG J. Aeronautical Manufacturing Technology, 2019, 62(3): 20–31.
GUO L, GUO H B, MA G H, et al. Ruddlesden-Popper structured BaLa2Ti3O10, a highly anisotropic material for thermal barrier coatings [J]. Ceramics International, 2012, 38(5): 4345–4352.
FENG J, XIAO B, ZHOU R, et al. Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln = La, Nd, Sm, Eu, Gd or Dy) natural super lattice structure [J]. Acta Materialia, 2012, 60(8): 3380–3392.
WAN C L, QU Z X, HE Y, et al. Ultralow thermal conductivity in highly anion-defective aluminates [J]. Physical Review Letters, 2008, 101(8): 085901.
VAßEN R, JARLIGO M O, STEINKE T, et al. Overview on advanced thermal barrier coatings [J]. Surface and Coatings Technology, 2010, 205(4): 938–942.
YAMANAKA S, FUJIKANE M, HAMAGUCHI T, et al. Thermophysical properties of BaZrO3 and BaCeO3 [J]. Journal of Alloys and Compounds, 2003, 359(1/2): 109–113.
KUROSAKI K, MATSUDA T, UNO M, et al. Thermoelectric properties of BaUO3 [J]. Journal of Alloys and Compounds, 2001, 319(1): 271–275.
MAEKAWA T, KUROSAKI K, YAMANAKA S. Thermal and mechanical properties of perovskite-type barium hafnate [J]. Journal of Alloys and Compounds, 2006, 407: 44–48.
TEKMEN C, OZDEMIR I, CELIK E. Failure behaviour of functionally gradient materials under thermal cycling conditions [J]. Surface and Coatings Technology, 2003, 174: 1101–1105.
CELIK E, OZDEMIR I, AVCI E, et al. Corrosion behaviour of plasma sprayed coatings [J]. Surface and Coatings Technology, 2005, 193(1): 297–302.
KUROSAKI K, TANAKA T, MAEKAWA T, et al. Thermophysical properties of SrY2O4 [J]. Journal of Alloys and Compounds, 2005, 398(1): 304–308.
YAMANAKA S, MAEKAWA T, MUTA H, et al. Thermophysical properties of SrHfO3 and SrRuO3 [J]. Journal of Solid State Chemistry, 2004, 177(10): 3484–3489.
YAMANAKA S, KUROSAKI K, MAEKAWA T, et al. Thermochemical and thermophysical properties of alkaline-earth perovskites [J]. Journal of Nuclear Materials, 2005, 344(1): 61–66.
BRENDAN J K, CHRISTOPHER J H, et al. High-temperature phase transitions in SrZrO3 [J]. Physical Review B, 1999, 59(6): 4023–4027.
AHTEE A, AHTEE M, GLAZER A M, et al. The structure of orthorhombic SrZrO3 byneutron powder diffraction [J]. Acta Crystallographica, 1976, 32(12): 3243–3246.
AHTEE M, GLAZER A M, HEWAT A W. High-temperature phases of SrZrO3 [J]. Acta Crystallographica Section B, 1978, 34(3): 752–758.
MA W, SONG F Y, DONG H Y, et al. Journal of Inorganic Materials, 2012, 4(2): 100–104.
ZHANG J X, BAI Y, LI E B, et al. Yb2O3-Gd2O3 codoped strontium zirconate composite ceramics for potential thermal barrier coating applications [J]. International Journal of Applied Ceramic Technology, 2020, 17(4): 1608–1618.
MA W, MACK D, MALZBENDER J, et al. Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings [J]. Journal of the European Ceramic Society, 2008, 28(16): 3071–3081.
MA W, MENG X F, WEN J, et al. Aging effect on microstructure and property of strontium zirconate coating co-doped with double rare-earth oxides [J]. Journal of the American Ceramic Society, 2018, 102(5566): 2143–2153.
MA W, MACK D E, VAßEN R, et al. Perovskite-type strontium zirconate as a new material for thermal barrier coatings [J]. Journal of the American Ceramic Society, 2008, 91(8): 2630–2635.
MA B L, MA W, HUANG W, et al. Journal of Inorganic Materials, 2019, 34(4): 48–54.
SHIRVANI K, FIROUZI S, RASHIDGHAMAT A. Microstructures and cyclic oxidation behaviour of Pt-free and low-Pt Ni Al coatings on the Ni-base superalloy Rene-80 [J]. Corrosion Science, 201(55): 378–384.
GOWARD G W. Progress in coatings for gas turbine airfoils [J]. Surface and Coatings Technology, 1998, 108/109: 73–79.
ZHANG X, LIU M, MAO J, et al. Surface Technology, 2020, 49(6): 236–243.
GUO H B, ZHANG T, WANG S X, et al. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 ℃ [J]. Corrosion Science, 2011, 53(6): 2228–2232.
GUO H B, CUI Y J, PENG H, et al. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy [J]. Corrosion Science, 2010, 52(4): 1440–1446.
CHEN B Y. Aviation Technology, 1993(3): 26–28.
GUO H B, GONG S K, XU H B. Materials China, 2009, 28(9/10): 18–26.
SHEN Z Y, LIU Z, MU R, et al. LaYbZrO thermal barrier coatings by EB-PVD: Microstructure, thermal shock life and failure behaviors [J]. Materials Today Communications, 2020, 26: 101810.
SHEN Z Y, LIU Z, LIU G X, et al. GdYbZrO thermal barrier coatings by EB-PVD: Phase, microstructure, thermal properties and failure [J]. Surfaces and Interfaces, 2021, 24: 101123.
SCHULZ U, LEYENS C, FRITSCHER K, et al. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerospace Science Technology, 2003, 7(1): 73–80.
AN Y L, HOU G L, CHEN J, et al. Microstructure and tribological properties of iron based metallic glass coatings prepared by atmospheric plasma spraying [J]. Vacuum, 2014, 107(18): 132–140.
YU C T, LIU H, ZHANG J, et al. Gradient thermal cycling behavior of a thermal barrier coating system constituted by NiCoCrAlY bond coat and pure metastable tetragonal nano-4YSZ top coat [J]. Ceramics International, 2019, 45(12): 15281–15289.
SCHLICHTING K W, PADTURE N P, KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia [J]. Journal of Material Science, 2001, 36(12): 3003–3010.
CHEN D Y, DAMBRA C, DORFMAN M. Process and properties of dense and porous vertically-cracked yttria stabilized zirconia thermal barrier coatings [J]. Surface and Coatings Technology, 2020, 404: 126467.
LIU M J, ZHANG G, LU Y. H, et al. Plasma spray-physical vapor deposition toward advanced thermal barrier coatings: A review [J]. Rare Metals, 2020, 39(5): 479–497.
LIU F, MAO J, DENG Z Q, et al. Surface Technology, 2017, 46(8): 21–26.
ZHANG Y, DENG C G, MAO J, et al. China Surface Engineering, 2019, 32(5): 55–68.
DENG Z Q, MAO J, LIU M, et al. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique [J]. Rare Metals, 2021, 40(11): 3308–3315.
DRAGAN M A, STRETT P, MMRIC R. Crystallization and microstructure of metastable water quenched nanostructured 8 mol% yttria-stabilized zirconia using the solution precursor plasma spray method [J]. Journal of Materials Science, 2014, 49(8): 3215–3224.
PAWLOWSKI L. Suspension and solution thermal spray coatings [J]. Surface and Coatings Technology, 2009, 203(19): 2807–2829.
JORDAN E H, JIANG C, GELL M. The solution precursor plasma spray (SPPS) process: A review with energy considerations [J]. Journal of Thermal Spray Technology, 2015, 24(7): 1153–1165.
JIANG C, JORDAN E H, HARRIS A B, et al. Double-layer gadolinium zirconate/yttria stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process [J]. Journal of Thermal Spray Technology, 2015, 24(6): 895–906.
CHEN D, JORDAN E H, GELL M. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process [J]. Surface and Coatings Technology, 2008, 202(10): 2132–2138.
MUOTO C K, JORDAN E H, GELL M. Identification of desirable precursor properties for solution precursor plasma spray [J]. Journal of Thermal Spray Technology, 2011, 20(4): 802–816.
KARTHIKEYAN J, BBEMDT C C, TIKKANEN J, et al. Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors [J]. Nanostructured Materials, 1997, 8(1): 61–74.
PAWLOWSKI L. Finely grained nanometric and sub-micrometric coatings by thermal spraying: A review [J]. Surface and Coatings Technology, 2008, 202: 4318–4328.
FAUCHAIS P, RAT V, COUDERT J F, et al. Operating parameters for suspension and solution plasma-spray coatings [J]. Surface and Coatings Technology, 2008, 202(18): 4309–4317.
SIVAKUMAR G, DUSANE R O, JOSHI S V. A novel approach to process phase pure α-Al2O3 coatings by solution precursor plasma spraying [J]. Journal of the European Ceramic Society, 2013, 33(13/14): 2823–2829.
CHEN D, JORDAN E H, GELL M, et al. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process [J]. Acta Biomaterialia, 2008, 4(3): 553–559.
GOVINDARAJAN S, DUSANE R O, JOSHI S V, et al. Understanding the formation of vertical cracks in solution precursor plasma sprayed yttria-stabilized zirconia coatings [J]. Journal of the American Ceramic Society, 2014, 97(11): 3396–3406.
DARTHOUT É, GITZHOFER F. Structure stabilization by zirconia pinning effect of Y2Si2O7 environmental barrier coatings synthesized by solution precursor plasma spraying process [J]. Surface and Coatings Technology, 2017, 309: 1081–1088.
GELL M, XIE L D, MA X Q, et al. Highly durable thermal barrier coatings made by the solution precursor plasma spray process [J]. Surface and Coatings Technology, 2004, 177: 97–102.
JORDAN E H, XIE L, GELL M, et al. Superior thermal barrier coatings using solution precursor plasma spray [J]. Journal of Thermal Spray Technology, 2004, 13(1): 57–65.
GELL M, JORDAN E H, TEICHOLZ M, et al. Thermal barrier coatings made by the solution precursor plasma spray process [J]. Journal of Thermal Spray Technology, 2008, 17(1): 124–135.
XIE L D, MA X Q, OZTURK A, et al. Processing parameters effects on solution precursor plasma spray process spray patterns [J]. Surface and Coatings Technology, 2004, 183(1): 51–61.
JADHAV A, PADTURE N P, FANG W, et al. Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray [J]. Materials Science and Engineering A, 2005, 405(1/2): 313–320.
MAUER G, GUIGNARD A, VAßEN R, et al. Process diagnostics in suspension plasma spraying [J]. Surface and Coatings Technology, 2010, 204(4): 961–966.
ZOU Z H, DONOGHUE J, CURRY N, et al. A comparative study on the performance of suspension plasma sprayed thermal barrier coatings with different bond coat systems [J]. Surface and Coatings Technology, 2015, 275(8): 276–282.
CURRY N, TANG Z L, MARKOCSAN N, et al. Influence of bond coat surface roughness on the structure of axial suspension plasma spray thermal barrier coatings-thermal and lifetime performance [J]. Surface and Coatings Technology, 2015, 268(25): 15–23.
MEILLOT E, DAMIANI D, VINCENT S, et al. Analysis by modeling of plasma flow interactions with liquid injection [J]. Surface and Coatings Technology, 2013, 220(4): 149–156.
CARUYER C, VINCENT S, MEILLOT E, et al. Modeling the first instant of the interaction between a liquid and a plasma jet with a compressible approach [J]. Surface and Coatings Technology, 2010, 205(4): 974–979.
MARCHAND C, VARDELLE A, MARIAUX G, et al. Modelling of the plasma spray process with liquid feed-stock injection [J]. Surface and Coatings Technology, 2008, 202(6): 4458–4464.
SOYSAL D, ANSAR A. A new approach to understand liquid injection into atmospheric plasma jets [J]. Surface and Coatings Technology, 2013, 220(4): 187–190.
TOMA F L, BERTRANG G, KLEIN D, et al. Development of photocatalytic active TiO2 surfaces by thermal spraying of nanopowders [J]. Journal of Nano-materials, 2014, 2008(1): 58.
DARUT G, AGEORGES H, DENOIRJEAN A, et al. Tribological performances of YSZ composite coatings manufactured by suspension plasma spraying [J]. Surface and Coatings Technology, 2013, 217(2): 172–180.
GONG S, VANEVERY K, WANG H, et al. Microstructure and thermal properties of inflight rare-earth doped thermal barriers prepared by suspension plasma spray [J]. Journal of the European Ceramic Society, 2014, 34(5): 1243–1253.
SCHLEGEL N, EBERT S, MAUER G, et al. Columnarstructured Mg-Al-spinel thermal barrier coatings (TBCs) by suspension plasma spraying (SPS) [J]. Journal of Thermal Spray Technology, 2015, 24(1/2): 144–151.
TARASI F, MDRAJ M, DOLATABADI A, et al. Effective parameters in axial injection suspension plasma spray process of alumina-zirconia ceramics [J]. Journal of Thermal Spray Technology, 2008, 17(5/6): 685–691.
CHEN X L, OHNUKI T, KURODA S, et al. Columnar and DVC-structured thermal barrier coatings deposited by suspension plasma spray: High-temperature stability and their corrosion resistance to the molten salt [J]. Ceramics International, 2016, 42(15): 16822–16832.
CHEN X L, KURODA S, OHNUKI T, et al. Effects of processing parameters on the deposition of yttria partially stabilized zirconia coating during suspension plasma spraying [J]. Journal of American Ceramic Society, 2016, 99(11): 3546–3555.
CURRY N, EVERY K, SNYDER T, et al. Performance testing of suspension plasma sprayed thermal barrier coatings produced with varied suspension parameters [J]. Coatings, 2015, 5(7): 338–356.
RAMPON R, MARCHAND O, FILIATRE C, et al. Influence of suspension characteristics on coatings microstructure obtained by suspension plasma spraying [J]. Surface and Coating Technology, 2008, 202(18): 4337–4342.
FAN W, BAI Y, LI J R, et al. Microstructural design and properties of supersonic suspension plasma sprayed thermal barrier coatings [J]. Journal of Alloys and Compounds, 2017, 699(3): 763–774.
WALDBILLIG D, KESLER O. The effect of solids and dispersant loadings on the suspension viscosities and deposition rates of suspension plasma sprayed YSZ coatings [J]. Surface and Coatings Technology, 2009, 203(15): 2098–2101.
BERNARD B, BIANCHI L, MALLÉ A, et al. Columnar suspension plasma sprayed coating microstructure control for thermal barrier coating application [J]. Journal of the European Ceramic Society, 2016, 36(4): 1081–1089.
SOKOŁOWSKI P, KOZERSKI S, PAWŁOWSKI L, et al. The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings [J]. Surface and Coatings Technology, 2014, 260(11): 97–106.
ŁATKA L, CATTINT A, PAWLOWSKI L, et al. Thermal diffusivity and conductivity of yttria stabilized zirconia coatings obtained by suspension plasma spraying [J]. Surface and Coatings Technology, 2012, 208(6): 87–91.
BERGHAUS J O, MARPLE B R, MOREAU C. Suspension plasma spraying of nanostructured WC-12 Co coatings [J]. Journal of Thermal Spray Technology, 2006, 15(4): 676–681.
VAßEN R, YI Z, KAßNER H, et al. Suspension plasma spraying of TiO2 for the manufacture of photovoltaic cells [J]. Surface and Coatings Technology, 2009, 203: 2146–2149.
GANVIR A, CURRY N, MARKOCSAN N, et al. Comparative study of suspension plasma sprayed and suspension high velocity oxy-fuel sprayed YSZ thermal barrier coatings [J]. Surface & Coatings Technology, 2015, 268: 70–76.
BERNARD B, QUET A, BIANCHI L, et al. Thermal insulation properties of YSZ coatings: Suspension plasma spraying (SPS) versus electron beam physical vapor deposition (EB-PVD) and atmospheric plasma spraying (APS) [J]. Surface and Coatings Technology, 2017, 318: 122–128.
WANG G L, XIONG F, RUI D M, et al. Materials Engineering, 2011(7): 6–9.
XU Y H, LI Q. China Surface Engineering, 2010, 23(1): 51–56.
MILLER R A. Oxidation based model for thermal barrier coating life [J]. Journal of the American Ceramic Society, 1984, 67(8): 517–521.
CHEN X, WANG R, YAO N, et al. Foreign object damage in a thermal barrier system: Mechanisms and simulations [J]. Materials Science and Engineering A, 2003, 352(1/2): 221–231.
ZHOU Y C, LIU Q X, YANG L, et al. Journal of Solid State Mechanics, 2010, 31(5): 504–531.
YANG L, ZHOU Y C, QI S S. Advances in Mechanics, 2012, 42(6): 704–721.
CARTER T J. Common failures in gas turbine blades [J]. Engineering Failure Analysis, 2005, 12(2): 237–247.
HAN M, HUANG J H, CHEN S H. Journal of Aeronautical Materials, 2013, 33(5): 83–98.
MEHBOOOB G, LIU M J, XU T, et al. A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime [J]. Ceramics International, 2020, 46(7): 8497–8521.
KARLSSON A M, EVANS A G. A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems [J]. Acta Materialia, 2001, 49(10): 1793–1804.
RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Materialia, 2000, 48(15): 3963–3976.
YANG H B, WANG Y S, WANG X, et al. Surface Technology, 2020, 49(1): 163–172.
LIU Y B, LIU J H, YU Y H, et al. Chinese Journal of Ship Research, 2017, 12(2): 107–115.
KRAUSE A R, LI X, PADTURE N P. Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings [J]. Scripta Materialia, 2016: 118–122.
STEINBERG L, NARAPARAJU R, HECKERT M, et al. Erosion behavior of EB-PVD 7YSZ coatings under corrosion/erosion regime: Effect of TBC micro-structure and the CMAS chemistry [J]. Journal of the European Ceramic Society, 2018, 38(15): 5101–5112.
RAI A K, BHATTACHARYA R S, WOLFE D E, et al. CMAS-resistant thermal barrier coatings(TBC) [J]. International Journal of Applied Ceramic Technology, 2010, 7(5): 662–674.
WANG X Y, XIN L, WEI H, et al. Corrosion Science and Protection Technology, 2013, 25(3): 175–183.
PENG X, CLARKE D R. Piezospectroscopic analysis of interface debonding in thermal barrier coatings [J]. Journal of the American Ceramic Society, 2000, 83(5): 1165–1170.