PDF (1.2 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Stable High-Entropy Double Perovskite Cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for Intermediate-Temperature Solid Oxide Fuel Cells

Yihan LING1Xu HAN1Yang YANG1,2Tianqiang LIN1Xinxin WANG1Xuemei OU1Shaorong WANG2
School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
Show Author Information

Abstract

High-entropy double perovskite SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-SBC) as a cathode material was prepared by a modified Pechini method, and the performance of HE-SBC with 10% (in mole fraction) Gd2O3-doped CeO2 (GDC) (HE-SBC-GDC) was optimized. The results show that the thermal expansion of Co ions caused by the change of valence state can be reduced due to the formation of high-entropy at B-site, thereby reducing the thermal expansion coefficient of SBC. The polarization impedance (Rp) of the HE-SBC symmetrical cell with yttria-stabilized zirconia (YSZ) as an electrolyte is 1.04 Ω·cm2 at 800 ℃ and the maximum power density and Rp of the anode-supported single cell are 683.53 m W/cm2 and 0.46 Ω·cm2, respectively. Furthermore, the catalytic activity of HE-SBC is improved by the addition of GDC[m(HE-SBC):m(GDC)=7:3] due to the enlarged three-phase interface. The polarization resistance of HE-SBC-GDC composite cathode symmetric cell is only 0.09 Ω·cm2 at 800 ℃ and the maximum power density and Rp of the anode-supported single cell are 838.66 m W/cm2 and 0.12 Ω·cm2, respectively.

CLC number: TM911.47 Document code: A Article ID: 0454-5648(2022)01-0219-07

References

[1]

SKINNER S J. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes[J]. Int J Inorg Mater, 2001, 3(2): 113–121.

[2]

SOUZAZ R A DE, KILNER J A. Oxygen transport in La1-xSrxMn1-yCoyOδ perovskites: Part Ⅰ. Oxygen tracer diffusion[J]. Solid State Ion, 1998, 106(3/4): 175–187.

[3]

BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008, 37(8): 1568–1578.

[4]

KILNER J A. Fast oxygen transport in acceptor doped oxides[J]. Solid State Ion, 2000, 129(11): 13–23.

[5]

ULLMANN H, TROFIMENKO N, TIETZ F, et al. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid State Ion, 2000, 138(1/2): 79–90.

[6]

WEI T, ZHANG Q, HUANG Y H, et al. Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells[J]. J Mater Chem, 2012, 22(8): 225–231.

[7]

FRONTERA C, CANEIRO A, CARRILLO A E, et al. Tailoring oxygen content on PrBaCo2O5+δ layered cobaltites[J]. Chem Mater, 2005, 17(22): 5439–5445.

[8]

TARANCON A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813.

[9]

KIM J H, PRADO F, MANTHIRAM A. LnBaCo2O5 + δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. J Electrochem Soc, 2008, 155(4): 385–390.

[10]

KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5 + δ with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500–2505.

[11]

TARANCON A, SKINNER S J, CHARATER R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2007, 17(30): 3175–3181.

[12]

PARFITT D, CHRONEOS A, TARANCÓN A, et al. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ[J]. J Mater Chem, 2011, 21(7): 2183–2186.

[13]

TASKIN A A, LAVROV A N, ANDO Y. Fast oxygen diffusion in A-site ordered perovskites[J]. Prog Solid State Chem, 2007, 35(2-4): 481–490.

[14]

MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015; 72: 141–337

[15]

DU Z, YAN C, ZHAO H, et al. Effective Ca-doping in Y1–xCaxBaCo2O5+δ cathode materials for intermediate temperature solid oxide fuel cells[J]. J Mater Chem A, 2017, 5(48): 25641–25651.

[16]

GAO P, BOLON A, TANEJA M, et al. Thermal expansion and elastic moduli of electrolyte materials for high and intermediate temperature solid oxide fuel cell[J]. Solid State Ion, 2017, 300: 1–9.

[17]

ZHAO H, ZHENG Y, YANG C, et al. Electrochemical performance of Pr1–xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2013, 38(36): 16365–16372.

[18]

LEE H Y, HUANG K, GOODENOUGH J B. Sr- and Ni-doped La CoO3 and LaFeO3 perovskites[J]. J Electrochem Soc, 1998, 145(9): 3220–3227.

[19]

ZHAO L, NIAN Q, HE B, et al. Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 453–456.

[20]

RAVEAU B, SEIKH M. Cobalt oxides: From Crystal Chemistry to Physics[M]. Wiley-VCH, 2012.

[21]

SWIERCZEK K, YOSHIKURA N, ZHENG K, et al. Correlation between crystal and transport properties in LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln-selected lanthanides, Y)[J]. Solid State Ion, 2014, 262: 645–649.

[22]

KIMJ H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective[J]. J Mater Chem A, 2015, 3(48): 24195–24210.

[23]

TSVETKOV D S, IVANOV I L, ZUEV A Y. Crystal structure and oxygen content of the double perovskites GdBaCo2–xFexO6−δ[J]. J Solid State Chem, 2013, 199: 154–159.

[24]

OLSZEWSKA A, ZHANG Y, DU Z H, et al. Mn-rich SmBaCo0.5Mn1.5O5+δ double perovskite cathode material for SOFCs[J]. Int J Hydrogen Energ, 2019, 44(50): 27587–27599.

[25]

ZHANG Y, ZHAO H L, DU Z H, et al. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell[J]. Chem Mater, 2019, 31(10): 3784–3793.

[26]

ZHANG Y, ZHANG B Z, ZHAO H L, et al, Electrochemical performance and structural durability of Mg-doped SmBaMn2O5+δ layered perovskite electrode for symmetrical solid oxide fuel cell[J]. Catal Today, 2021, 364: 80–88.

[27]

KIM J H, MANTHIRAM A. Layered NdBaCo2-xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2009, 54(28): 7551–7557.

[28]

CHOI S, SHIN J, KIM G. The electrochemical and thermodynamic characterization of PrBaCo2-xFexO5+δ (x=0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells[J]. J Power Sources, 2012, 201: 10–17.

[29]

DING H, XUE X. Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(15): 4718–4721.

[30]

ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.

[31]

SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilized perovskite type oxides[J]. J Eur Ceram Soc, 2018, 38(5): 2318–2327.

[32]

LIU D, LIU H H, NING S S, et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials[J]. J Adv Ceram, 2020, 9(3): 339–348.

[33]

LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503–510.

[34]

YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3–δ cathode[J]. J Power Sources, 2021, 482: 228959.

[35]

DU Zhihong, LI Keyun, ZHAO Hailei. J Chin Ceram Soc, 2020, 48(2): 45–52.

[36]

ZHAO Z F, CHEN H, XIANG H M, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. J Adv Ceram, 2020, 9(3): 303–311.

[37]

LIU J C, JIN F J, YANG X, et al. YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties[J]. Electrochim Acta, 2019, 297: 344–354.

[38]

JIN F J, LI J H, WANG Y, et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell[J]. Ceram Int, 2018, 44(18): 22489–22496.

[39]

JIN F J, LIU J C, SHEN Y, et al. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ–Sm0.2Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs[J]. J Alloy Compd, 2016, 685: 483–491.

Journal of the Chinese Ceramic Society
Pages 219-225
Cite this article:
LING Y, HAN X, YANG Y, et al. Stable High-Entropy Double Perovskite Cathode SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ for Intermediate-Temperature Solid Oxide Fuel Cells. Journal of the Chinese Ceramic Society, 2022, 50(1): 219-225. https://doi.org/10.14062/j.issn.0454-5648.20210514
Metrics & Citations  
Article History
Copyright
Return