High-entropy double perovskite SmBa(Mn0.2Fe0.2Co0.2Ni0.2Cu0.2)2O5+δ(HE-SBC) as a cathode material was prepared by a modified Pechini method, and the performance of HE-SBC with 10% (in mole fraction) Gd2O3-doped CeO2 (GDC) (HE-SBC-GDC) was optimized. The results show that the thermal expansion of Co ions caused by the change of valence state can be reduced due to the formation of high-entropy at B-site, thereby reducing the thermal expansion coefficient of SBC. The polarization impedance (Rp) of the HE-SBC symmetrical cell with yttria-stabilized zirconia (YSZ) as an electrolyte is 1.04 Ω·cm2 at 800 ℃ and the maximum power density and Rp of the anode-supported single cell are 683.53 m W/cm2 and 0.46 Ω·cm2, respectively. Furthermore, the catalytic activity of HE-SBC is improved by the addition of GDC[m(HE-SBC):m(GDC)=7:3] due to the enlarged three-phase interface. The polarization resistance of HE-SBC-GDC composite cathode symmetric cell is only 0.09 Ω·cm2 at 800 ℃ and the maximum power density and Rp of the anode-supported single cell are 838.66 m W/cm2 and 0.12 Ω·cm2, respectively.
SKINNER S J. Recent advances in perovskite-type materials for solid oxide fuel cell cathodes[J]. Int J Inorg Mater, 2001, 3(2): 113–121.
SOUZAZ R A DE, KILNER J A. Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites: Part Ⅰ. Oxygen tracer diffusion[J]. Solid State Ion, 1998, 106(3/4): 175–187.
BRETT D J L, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chem Soc Rev, 2008, 37(8): 1568–1578.
KILNER J A. Fast oxygen transport in acceptor doped oxides[J]. Solid State Ion, 2000, 129(11): 13–23.
ULLMANN H, TROFIMENKO N, TIETZ F, et al. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes[J]. Solid State Ion, 2000, 138(1/2): 79–90.
WEI T, ZHANG Q, HUANG Y H, et al. Cobalt-based double-perovskite symmetrical electrodes with low thermal expansion for solid oxide fuel cells[J]. J Mater Chem, 2012, 22(8): 225–231.
FRONTERA C, CANEIRO A, CARRILLO A E, et al. Tailoring oxygen content on PrBaCo2O5+δ layered cobaltites[J]. Chem Mater, 2005, 17(22): 5439–5445.
TARANCON A, BURRIEL M, SANTISO J, et al. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2010, 20(19): 3799–3813.
KIM J H, PRADO F, MANTHIRAM A. LnBaCo2O5 + δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. J Electrochem Soc, 2008, 155(4): 385–390.
KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5 + δ with a perovskite related structure and ordered A cations[J]. J Mater Chem, 2007, 17(24): 2500–2505.
TARANCON A, SKINNER S J, CHARATER R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells[J]. J Mater Chem, 2007, 17(30): 3175–3181.
PARFITT D, CHRONEOS A, TARANCÓN A, et al. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ[J]. J Mater Chem, 2011, 21(7): 2183–2186.
TASKIN A A, LAVROV A N, ANDO Y. Fast oxygen diffusion in A-site ordered perovskites[J]. Prog Solid State Chem, 2007, 35(2-4): 481–490.
MAHATO N, BANERJEE A, GUPTA A, et al. Progress in material selection for solid oxide fuel cell technology: A review[J]. Prog Mater Sci, 2015; 72: 141–337
DU Z, YAN C, ZHAO H, et al. Effective Ca-doping in Y1–xCaxBaCo2O5+δ cathode materials for intermediate temperature solid oxide fuel cells[J]. J Mater Chem A, 2017, 5(48): 25641–25651.
GAO P, BOLON A, TANEJA M, et al. Thermal expansion and elastic moduli of electrolyte materials for high and intermediate temperature solid oxide fuel cell[J]. Solid State Ion, 2017, 300: 1–9.
ZHAO H, ZHENG Y, YANG C, et al. Electrochemical performance of Pr1–xYxBaCo2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Int J Hydrogen Energy, 2013, 38(36): 16365–16372.
LEE H Y, HUANG K, GOODENOUGH J B. Sr- and Ni-doped La CoO3 and LaFeO3 perovskites[J]. J Electrochem Soc, 1998, 145(9): 3220–3227.
ZHAO L, NIAN Q, HE B, et al. Novel layered perovskite oxide PrBaCuCoO5+δ as a potential cathode for intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(2): 453–456.
RAVEAU B, SEIKH M. Cobalt oxides: From Crystal Chemistry to Physics[M]. Wiley-VCH, 2012.
SWIERCZEK K, YOSHIKURA N, ZHENG K, et al. Correlation between crystal and transport properties in LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (Ln-selected lanthanides, Y)[J]. Solid State Ion, 2014, 262: 645–649.
KIMJ H, MANTHIRAM A. Layered LnBaCo2O5+δ perovskite cathodes for solid oxide fuel cells: An overview and perspective[J]. J Mater Chem A, 2015, 3(48): 24195–24210.
TSVETKOV D S, IVANOV I L, ZUEV A Y. Crystal structure and oxygen content of the double perovskites GdBaCo2–xFexO6−δ[J]. J Solid State Chem, 2013, 199: 154–159.
OLSZEWSKA A, ZHANG Y, DU Z H, et al. Mn-rich SmBaCo0.5Mn1.5O5+δ double perovskite cathode material for SOFCs[J]. Int J Hydrogen Energ, 2019, 44(50): 27587–27599.
ZHANG Y, ZHAO H L, DU Z H, et al. High-performance SmBaMn2O5+δ electrode for symmetrical solid oxide fuel cell[J]. Chem Mater, 2019, 31(10): 3784–3793.
ZHANG Y, ZHANG B Z, ZHAO H L, et al, Electrochemical performance and structural durability of Mg-doped SmBaMn2O5+δ layered perovskite electrode for symmetrical solid oxide fuel cell[J]. Catal Today, 2021, 364: 80–88.
KIM J H, MANTHIRAM A. Layered NdBaCo2-xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochim Acta, 2009, 54(28): 7551–7557.
CHOI S, SHIN J, KIM G. The electrochemical and thermodynamic characterization of PrBaCo2-xFexO5+δ (x=0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells[J]. J Power Sources, 2012, 201: 10–17.
DING H, XUE X. Cobalt-free layered perovskite GdBaFe2O5+x as a novel cathode for intermediate temperature solid oxide fuel cells[J]. J Power Sources, 2010, 195(15): 4718–4721.
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilized perovskite type oxides[J]. J Eur Ceram Soc, 2018, 38(5): 2318–2327.
LIU D, LIU H H, NING S S, et al. Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials[J]. J Adv Ceram, 2020, 9(3): 339–348.
LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics[J]. J Adv Ceram, 2020, 9(4): 503–510.
YANG Y, BAO H, NI H, et al. A novel facile strategy to suppress Sr segregation for high-entropy stabilized La0.8Sr0.2MnO3–δ cathode[J]. J Power Sources, 2021, 482: 228959.
DU Zhihong, LI Keyun, ZHAO Hailei. J Chin Ceram Soc, 2020, 48(2): 45–52.
ZHAO Z F, CHEN H, XIANG H M, et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications[J]. J Adv Ceram, 2020, 9(3): 303–311.
LIU J C, JIN F J, YANG X, et al. YBaCo2O5+δ-based double-perovskite cathodes for intermediate-temperature solid oxide fuel cells with simultaneously improved structural stability and thermal expansion properties[J]. Electrochim Acta, 2019, 297: 344–354.
JIN F J, LI J H, WANG Y, et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+δ as a novel cathode for intermediate-temperature solid-oxide fuel cell[J]. Ceram Int, 2018, 44(18): 22489–22496.
JIN F J, LIU J C, SHEN Y, et al. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ–Sm0.2Ce0.8O1.9 (Ln=Pr and Nd) composite cathodes for IT-SOFCs[J]. J Alloy Compd, 2016, 685: 483–491.