The ceramics of 0.96K0.48Na0.52Nb(1–x)TaxO3 0.04BaZrO3 0.3%MnCO3 were prepared via solid-state reaction and subsequent sintering in air and reducing atmospheres. The effects of Ta doping and sintering atmosphere on the microstructure and piezoelectric properties of ceramics were investigated. The results demonstrate that all the ceramics sintered in different atmospheres exhibit a pure perovskite structure. The phase structure of KNN-based ceramics is the coexistence of rhombohedral and orthorhombic phases. Also, the generation of oxygen vacancies is suppressed as Ta doping content is increased. When x = 0.1, the ceramics sintered in a reducing atmosphere exhibit the optimum electrical properties (i.e., d33=172 pC/N, d33* =294 pm/V, kp=24.9, ε33T=820, and tanδ=0.021), which are superior to the counterparts sintered in air atmosphere (i.e., d33=142 pC/N, d33*=220 pm/V, kp=21.1,ε33T=593, and tanδ=0.022). It is indicated that sintering in a reducing atmosphere can suppress the grain growth, thus facilitating the densification of ceramics and improving the piezoelectric properties.
ZHAI Jiwei, LIU Baihui, LIU Xing, et al. J Chin Ceram Soc, 2017, 45(9): 1220–1230.
RöDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics[J]. J Am Ceram Soc, 2009, 92(6): 1153–1177.
PANDA P K. Review: environmental friendly lead-free piezoelectric materials[J]. J Mater Sci, 2009, 44(19): 5049–5062.
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84–87.
WANG X H, CHEN I W, DENG X Y, et al. New progress in development of ferroelectric and piezoelectric nanoceramics[J]. J Adv Ceram, 2015, 4(1): 1–21.
SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(16): 954–959.
XU Yaping, JIANG Minhong, LI Lingna, et al. J Chin Ceram Soc, 2020, 48(6): 914–918.
WANG X, WU J, XIAO D, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. J Am Chem Soc, 2014, 136(7): 2905–2910.
WU B, WU H, WU J, et al. Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence[J]. J Am Chem Soc, 2016, 138(47): 15459–15464.
LI J F, WANG K, ZHU F Y, et al. (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. J Am Ceram Soc, 2013, 96(12): 3677–3696
CHENG X, WU J, LOU X, et al. Achieving both giant d33 and high TC in patassium-sodium niobate ternary system[J]. ACS Appl Mater Interfaces, 2014, 6(2): 750–756.
XU K, LI J, LV X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Adv Mater, 2016, 28(38): 8519–8523.
MONTERO-TAVERA C, DURRUTHY-RODRíGUEZ M D, CORTéS-VEGA F D, et al. Study of the structural, ferroelectric, dielectric, and pyroelectric properties of the K0.5Na0.5NbO3 system doped with Li+, La3+, and Ti4+[J]. J Adv Ceram, 2020, 9(3): 329–338.
LIU Y, XU D, YU Z, et al. A novel rotary piezoelectric motor using first bending hybrid transducers[J]. Appl Sci, 2015, 5(3): 472–484.
MORITA T. Miniature piezoelectric motors[J]. Sens Actuator A Phys, 2003, 103(3): 291–300.
CHU X, MA L, LI L. A disk-pivot structure micro piezoelectric actuator using vibration mode B11[J]. Ultrasonics, 2006, 44: 561–564.
WANG H, ZHAO P, CHEN L, et al. Energy storage properties of 0.87BaTiO3–0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers[J]. J Adv Ceram, 2020, 9(3): 292–302.
SAKABE Y, MINAL K, QAKINO K. High-dielectric constant ceramics for base metal monolithic[J]. Jpn J Appl Phys, 1981, 20: 147–150.
BURN I, MAHER G H. High resistivity BaTiO3 ceramics sintered in CO–CO2 atmospheres[J]. J Mater Sci, 1975, 10: 633–640.
KAWADA S, KIMURA M, HIGUCHI Y, et al. (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes[J]. Appl Phys Express, 2009, 2(11): 111401.
LIU C, LIU P, KOBAYASHI K, et al. Base metal co-fired (Na,K)NbO3 structures with enhanced piezoelectric performance[J]. J Electroceram, 2014, 32(4): 301–306.
WANG B, LIU F, ZHANG F, et al. Effects of the post-annealing reductive-atmosphere-sintered (K0.48Na0.52)NbO3 lead-free piezoceramics [J]. Ceram Int, 2020, 46(17): 27373–27380.
LIN D, KWOK K W, CHAN H W L. Dielectric and piezoelectric properties of (K0.5Na0.5)NbO3–Ba(Zr0.05Ti0.95)O3 lead-free ceramics[J]. Appl Phys Lett, 2007, 91(14): 143513.
SHAO B, QIU J, ZHU K, et al. Tantalum influence on electrical properties of lead-free (K0.4425Na0.52Li0.0375)(Nb0.93−xTaxSb0.07)O3 piezoelectric ceramics[J]. J Mater Sci: Mater Electron, 2011, 23(4): 846–850.
SCHAAB S, SCHULZ M, FRITZE H, et al. Influence of reducing atmosphere on the defect chemistry of lead lanthanum zirconate titanate (8/65/35)[J]. Solid State Ionics, 2012, 228: 56–63.
MALIC B, KORUZA J, HRESCAK J, et al. Sintering of lead-free piezoelectric sodium potassium niobate ceramics[J]. Materials, 2015, 8(12): 8117–8146.
FISHER J G, ROUT D, MOON K S, et al. High-temperature X-ray diffraction and Raman spectroscopy study of (K0.5Na0.5)NbO3 ceramics sintered in oxidizing and reducing atmospheres[J]. Mater Chem Phys, 2010, 120(2-3): 263–271.
LI P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics[J]. Adv Mater, 2018, 30(8): 1705171.
RANDALL C A, KIM N, KUCERA J P, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics[J]. J Am Ceram Soc, 1998, 81(3): 677–688.
JIANG X P, CHEN Y, LAM K H, et al. Effects of MnO doping on properties of 0.97K0.5Na0.5NbO3–0.03(Bi0.5K0.5)TiO3 piezoelectric ceramics[J]. J Alloys Compd, 2010, 506(1): 323–326.
CAO W W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. J Phys Chem Solids, 1996, 57(10): 1499–1505.
ARLT G, PERTSEV N A. Force constant and effective mass of 90° domain walls in ferroelectric ceramics[J]. J Appl Phys, 1991, 70(4): 2283–2289.
CHEN K, MA J, SHI C, et al. Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum[J]. J Alloys Compd, 2021, 852.