PDF (4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Publishing Language: Chinese

Electrocaloric Effect of Ferroelectric Ceramic and Its Application

Chao ZHANGFangjie CENWenrong XIAOQuanpei DUKailun ZOUShenglin JIANG()Guangzu ZHANG()
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
Show Author Information

Abstract

Electrocaloric effect, i.e., the entropy and temperature changes arising from phase transition and dipole orientation induced in electric fields, can realize heat transport and refrigeration. The electrocaloric cooling eliminates the use of environmentally harmful coolants, possesses high cooling efficiency, small size and low weight as a promising environmental-friendly and high-efficiency cooling. One key point for electrocaloric cooling toward practical cooling is to enhance the performance of the electrocaloric effect of ferroelectrics. Ferroelectric ceramics have attracted much attention due to their high polarization, rich phase structures and variety of regulation methods. In this review, we introduced the electrocaloric effect of ferroelectric ceramic thin films, bulks and multilayer thick films with various compositions, and discussed the internal relations among electrocaloric effect, compositions, phase transition behaviors and microstructures. Furthermore, we concluded the modulation approaches of the electrocaloric effect of ferroelectric ceramics, and gave the future development of electrocaloric materials.

CLC number: TM282 Document code: A Article ID: 0454-5648(2022)03-0642-19

References

[1]

IBRAHIM D. Refrigeration systems and applications[M]. European Solid State Circuits Conference IEEE, 2017.

[2]

LI G. Performance evaluation of low global warming potential working fluids as R134a alternatives for two-stage centrifugal chiller applications[J]. Korean J Chem Eng, 2021, 38(7): 1438–1451.

[3]

VELDERS G, FAHEY D W, DANIEL J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. P Natl Acad Sci USA, 2009, 106(27): 10949–10954.

[4]

SHAH N, WEI M, LETSCHERT V, et al. Benefits of leapfrogging to superefficiency and low global warming potential refrigerants in room air conditioning[J]. Lawrence Berkeley Nat Lab, 2015, 1: 1–38.

[5]

SHI J, HAN D, LI Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200–1225.

[6]

HSU K F, LOO S, GUO F, et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659): 818–821.

[7]

POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science, 2008, 320(5876): 634–638.

[8]

RUSS B, GLAUDELL A, URBAN J J, et al. Organic thermoelectric materials for energy harvesting and temperature control[J]. Nat Rev Mater, 2016, 1(10): 1–14.

[9]

KITANOVSKI A. Energy applications of magnetocaloric materials[J]. Adv Energy Mater, 2020, 10(10): 1903741.

[10]

TAGUCHI Y, SAKAI H, CHOUDHURY D. Magnetocaloric materials with multiple instabilities[J]. Adv Mater, 2017, 29(25): 1606144.

[11]

VALANT M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Prog Mater Sci, 2012, 57(6): 980–1009.

[12]

MENG Y, PU J H, PEI Q B. Electrocaloric cooling over high device temperature span[J]. Joule, 2021, 5(4): 780–793.

[13]

LIU Y, INFANTE I C, LOU X J, et al. Giant room‐temperature elastocaloric effect in ferroelectric ultrathin films[J]. Adv Mater, 2014, 26(35): 6132–6137.

[14]

TUŠEK J, ENGELBRECHT K, ERIKSEN D, et al. A regenerative elastocaloric heat pump[J]. Nat Energy, 2016, 1(10): 1–6.

[15]

LI B, KAWAKITA Y, OHIRA-KAWAMURA S, et al. Colossal barocaloric effects in plastic crystals[J]. Nature, 2019, 567(7749): 506–510.

[16]

AZNAR A, LLOVERAS P, ROMANINI M, et al. Giant barocaloric effects over a wide temperature range in superionic conductor AgI[J]. Nat Commun, 2017, 8(1): 1–6.

[17]

GU H M, CRAVEN B, QIAN X S, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density[J]. Appl Phys Lett, 2013, 102(11): 112901.

[18]

MOYA X, STERN‐TAULATS E, CROSSLEY S, et al. Giant electrocaloric strength in single‐crystal BaTiO3[J]. Adv Mater, 2013, 25(9): 1360–1365.

[19]

BAI Y, DING K, ZHENG G P, et al. Entropy‐change measurement of electrocaloric effect of BaTiO3 single crystal[J]. Phys Status Solidi (a), 2012, 209(5): 941–944.

[20]

SEBALD G, SEVEYRAT L, GUYOMAR D, et al. Electrocaloric and pyroelectric properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 single crystals[J]. J Appl Phys, 2006, 100(12): 124112.

[21]

LI J T, YIN R, W SU X P, et al. Complex phase transitions and associated electrocaloric effects in different oriented PMN–30PT single crystals under multi-fields of electric field and temperature[J]. Acta Mater, 2020, 182: 250–256.

[22]

SHAN D L, PAN K, LEI C H, et al. Large electrocaloric response over a broad temperature range near room temperature in BaxSr1−xTiO3 single crystals[J]. J Appl Phys, 2019, 126(20): 204103.

[23]

LIU D L, LI Q, YAN Q F. Electro-caloric effect in a BCZT single crystal[J]. CrystEngComm, 2018, 20(11): 1597–1602.

[24]

ZHANG G Z, WENG L X, HU Z Y, et al. Nanoconfinement-Induced Giant Electrocaloric Effect in Ferroelectric Polymer Nanowire Array Integrated with Aluminum Oxide Membrane to Exhibit Record Cooling Power Density[J]. Adv Mater, 2019, 31(8): 1806642.

[25]

ZHANG G Z, LI Q, GU H M, et al. Ferroelectric polymer nanocomposites for room‐temperature electrocaloric refrigeration[J]. Adv Mater, 2015, 27(8): 1450–1454.

[26]

ZHANG G Z, ZHANG X S, HUANG H B, et al. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J]. Adv Mater, 2016, 28(24): 4811–4816.

[27]

LI Q, ZHANG G Z, ZHANG X S, et al. Relaxor ferroelectric‐based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy[J]. Adv Mater, 2015, 27(13): 2236–2241.

[28]

CHEN Y Q, QIAN J F, YU J Y, ET AL. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites[J]. Adv Mater, 2020, 32(30): 1907927.

[29]

HEGENBARTH E. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures[J]. Cryogenics, 1961, 1(4): 242–243.

[30]

HEGENBARTH E. Dielektrische und kalorische Untersuchungen an ferroelektrischen Keramiken bei tiefen Temperaturen[J]. Phys Stat Sol (b), 1962, 2(11): 1544–1551.

[31]

KARCHEVSKⅡ A J. Electrocaloric effect in polycrystalline barium titanate[J]. Sov Phys Sol Stat, 1962, 3: 2249–2254.

[32]

THACHER P D. Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3 compounds[J]. J Appl Phys, 1968, 39(4): 1996–2002.

[33]

SINYAVSKY Y V, BRODYANSKY V M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body[J]. Ferroelectrics, 1992, 131(1): 321–325.

[34]

BIRKS E H. The electrocaloric effect in Pb(Sc0.5Nb0.5)O3 ceramic[J]. Phys Stat Sol A, 1986, 94(2): 523–527.

[35]

SHEBANOV L A, BIRKS E H, BORMAN K Y. Electrocaloric effect and structure of PbSc0.5Ta0.5O3–PbSc0.5Nb0.5O3 solid solutions[J]. Fiz Tverd Tela, 1988, 30(8): 2464–2469.

[36]

MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270–1271.

[37]

BAI Y, ZHENG G P, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 1983.

[38]

XIAO D Q, WANG Y C, ZHANG R L, et al. Electrocaloric properties of (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 ferroelectric ceramics near room temperature[J]. Mater Chem Phys, 1998, 57(2): 182–185.

[39]

LU S G, ROŽIČ B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect[J]. Appl Phys Lett, 2010, 97(16): 162904.

[40]

NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range[J]. Nature, 2019, 575(7783): 468–472.

[41]

LI X Y, QIAN X S, GU H M, et al. Giant electrocaloric effect in ferroelectric poly (vinylidenefluoride-trifluoroethylene) copolymers near a first-order ferroelectric transition[J]. Appl Phys Lett, 2012, 101(13): 132903.

[42]

GOUPIL F L, BERENOV A, AXELSSON A K, et al. Direct and indirect electrocaloric measurements on <001>–PbMg1/3Nb2/3O3–30PbTiO3 single crystals[J]. J Appl Phys, 2012, 111(12): 124109.

[43]

GERSON R, MARSHALL T C. Dielectric breakdown of porous ceramics[J]. J Appl Phys, 1959, 30(11): 1650–1653.

[44]

LIU Z K, LI X Y, ZHANG Q M. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics[J]. Appl Phys Lett, 2012, 101(8): 082904.

[45]

Feng Z Y, SHI D Q, DOU S X. Large electrocaloric effect in highly (001)-oriented 0.67PbMg1/3Nb2/3O3–0.33PbTiO3 thin films[J]. Solid State Commun, 2011, 151(2): 123–126.

[46]

MISCHENKO A S, ZHANG Q, WHATMORE R W, et al. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1∕3Nb2∕3O3–0.1PbTiO3 near room temperature[J]. Appl Phys Lett, 2006, 89(24): 242912.

[47]

CORREIA T M, YOUNG J S, WHATMORE R W, et al. Investigation of the electrocaloric effect in a PbMg2/3Nb1/3O3–PbTiO3 relaxor thin film[J]. Appl Phys Lett, 2009, 95(18): 182904.

[48]

LI B, WANG J B, ZHONG X L, et al. Enhancing the electrocaloric effect of PbZr0.4Ti0.6O3/PbTiO3 superlattices via composition tuning[J]. Europhys Lett, 2011, 95(6): 67004.

[49]

GENG W P, LIU Y, MENG X J, et al. Giant negative electrocaloric effect in antiferroelectric La‐doped Pb(ZrTi)O3 thin films near room temperature[J]. Adv Mater, 2015, 27(20): 3165–3169.

[50]

CHEN C, WANG S C, ZHANG T D, et al. Designing coexisting multi-phases in PZT multilayer thin films: an effective way to induce large electrocaloric effect[J]. RSC Adv, 2020, 10(11): 6603–6608.

[51]

SHIRSATH S E, CAZORLA C, LU T, et al. Interface-charge induced giant electrocaloric effect in lead free ferroelectric thin film bilayers[J]. Nano Lett, 2019, 20(2): 1262–1271.

[52]

GUO F, WU X, LU Q S, et al. Near room temperature giant negative and positive electrocaloric effects coexisting in lead-free BaZr0.2Ti0.8O3 relaxor ferroelectric films[J]. Ceram Int, 2018, 44(3): 2803–2808.

[53]

ENGELHARDT S, MOLIN C, GEBHARDT S, et al. BaZrxTi1−xO3 Epitaxial Thin Films for Electrocaloric Investigations[J]. Energy Technol, 2018, 6(8): 1526–1534.

[54]

AKCAY G, ALPAY S P, ROSSETTI JR G A, et al. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films[J]. J Appl Phys, 2008, 103(2): 024104.

[55]

ZHANG X, WANG J B, LI B, et al. Sizable electrocaloric effect in a wide temperature range tuned by tensile misfit strain in BaTiO3 thin films[J]. J Appl Phys, 2011, 109(12): 126102.

[56]

LI B, ZHANG X, WANG J B, et al. Giant electrocaloric effect of PbTiO3 thin film tuned in a wide temperature range by the anisotropic misfit strain[J]. Mech Res Commun, 2014, 55: 40–44.

[57]

MARATHE M, EDERER C. Electrocaloric effect in BaTiO3: a first-principles-based study on the effect of misfit strain[J]. Appl Phys Lett, 2014, 104(21): 212902.

[58]

HE Y, LI X M, GAO X D, et al. Enhanced electrocaloric properties of PMN–PT thin films with LSCO buffer layers[J]. Funct Mater Lett, 2011, 4(01): 45–48.

[59]

FENG Z Y, SHI D Q, ZENG R, et al. Large electrocaloric effect of highly (100)-oriented 0.68PbMg1/3Nb2/3O3–0.32PbTiO3 thin films with a Pb(Zr0.3Ti0.7)O3/PbOx buffer layer[J]. Thin Solid Films, 2011, 519(16): 5433–5436.

[60]

PENG B L, ZHANG Q, LYU Y N, et al. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range[J]. Nano Energy, 2018, 47: 285–293.

[61]

WANG D, YUAN G L, HAO G Q, et al. All-inorganic flexible piezoelectric energy harvester enabled by two-dimensional mica[J]. Nano Energy, 2018, 43: 351–358.

[62]

XU X W, LIU W L, LI Y, et al. Flexible mica films for high-temperature energy storage[J]. J Materiomics, 2018, 4(3): 173–178.

[63]

WANG D, CHEN X, YUAN G L, et al. Toward artificial intelligent self-cooling electronic skins: Large electrocaloric effect in all-inorganic flexible thin films at room temperature[J]. J Materiomics, 2019, 5(1): 66–72.

[64]

SHEN B Z, LI Y, HAO X H. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films[J]. ACS Appl Mater Interf, 2019, 11(37): 34117–34127.

[65]

YANG C H, HAN Y J, FENG C, et al. Toward multifunctional electronics: flexible NBT-based film with a large electrocaloric effect and high energy storage property[J]. ACS Appl Mater Interf, 2020, 12(5): 6082–6089.

[66]

QIU J H, JIANG Q. Film thickness dependence of electrocaloric effect in epitaxial Ba0.6Sr0.4TiO3 thin films[J]. J Appl Phys, 2008, 103(3): 034119.

[67]

QIU J H, JIANG Q. Orientation dependence of the electrocaloric effect of ferroelectric bilayer thin films[J]. Solid State Commun, 2009, 149(37–38): 1549–1552.

[68]

Y LI, S P LIN, Y J WANG, et al. Bending influence of the electrocaloric effect in a ferroelectric/paraelectric bilayer system[J]. J Phys D: Appl Phys, 2016, 49: 065305.

[69]

WU M, SONG D S, GUO M Y, et al. Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering[J]. ACS Appl Mate Interf, 2019, 11(40): 36863–36870.

[70]

YANG C H, FENG C, LV P P, et al. Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration[J]. Nano Energy, 2021: 106222.

[75]

YANG B, HAN X, DING K, et al. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1–xSrxTiO3 ceramics[J]. Appl Phys Lett, 2013, 103(16): 1270.

[76]

ZHANG C, DU Q P, LI W R, et al. High electrocaloric effect in barium titanate–sodium niobate ceramics with core–shell grain assembly[J]. J Materiomics, 2020, 6(3): 618–627.

[77]

SRIKANTH K S, PATEL S, VAISH R. Enhanced electrocaloric effect in glass-added 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics[J]. J Aust Ceram Soc, 2017, 53: 523–529.

[78]

WANG S B, DAI G Z, YAO Y B, et al. Direct and indirect measurement of large electrocaloric effect in B2O3–ZnO glass modified Ba0.65Sr0.35TiO3 bulk ceramics[J]. Scr Mater, 2021, 193: 59–63.

[79]

ZHANG D D, ZHANG X L, LI X J, et al. Effect of BaO–CaO–SiO2 addition on dielectric and electrocaloric properties of lead–free 0.2Ba(Ti0.9Sn0.1)O3–0.8Ba(Zr0.18Ti0.82)O3 bulk ceramics[J]. Solid State Sci, 2021, 119: 106684.

[80]

QIAN X S, YE H J, ZHANG Y T, et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics[J]. Adv Funct Mater, 2014, 24(9): 1300–1305.

[81]

WANG Y T, LI J N, YUAN R H, et al. Enhanced electrocaloric effect in BaSn/TiO3 ceramics by addition of CuO[J]. J Alloys Compd, 2020, 851: 156772.

[82]

KUMAR R, SINGH S. Enhanced electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3–0.1Sr(Sc0.5Nb0.5)O3 ferroelectric nanocrystalline ceramics[J]. J Alloys Compd, 2017, 723(5): 589–594.

[83]

VRABELJ M, URŠIČ H, KUTNJAK Z, et al. Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3[J]. J Eur Ceram Soc, 2016, 36(1): 75–80.

[84]

XIAO Q L, CHEN T T, YONG J W, et al. Enhanced electrocaloric effects in spark plasma–sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature[J]. J Am Ceram Soc, 2013, 96(4): 1021–1023.

[85]

LIU X Q, CHEN T T, FU M S, et al. Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: Effects of domain sizes and phase constitution[J]. Ceram Int, 2014, 40(7): 11269–11276.

[86]

DAI G Z, WANG S B, HUANG G H, et al. Direct and indirect measurement of large electrocaloric effect in barium strontium titanate ceramics[J]. Int J Appl Ceram Technol, 2019, 17(3): 1354–1361.

[87]

ZHANG G Z, CHEN Z B, FAN B Y, et al. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing[J]. APL Mater, 2016, 4(6): 064103.

[88]

SAWAGUCHI E, Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3[J]. J Phys Soc Jpn, 1953, 8(5): 615–629.

[89]

HAERTLING, G H. PLZT electrooptic materials and applications—a review[J]. Ferroelectrics, 1987, 75(1): 25–55.

[90]

LU B, LI P L, TANG Z H, et al. Large electrocaloric effect in relaxor ferroelectric and antiferroelectric lanthanum doped lead zirconate titanate ceramics[J]. Sci Rep, 2017, 7: 45335.

[91]

MENDEZ–GONZÁLEZ Y, PELÁIZ–BARRANCO A, YANG T Q, et al. Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics[J]. Appl Phys Lett, 2018, 112(12): 122904.

[92]

NIU Z H, JIANG Y P, TANG X G, et al. Giant negative electrocaloric effect in B-site nonstoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 antiferroelectric ceramics[J]. Mater Res Lett, 2018, 6(7): 384–389.

[93]

BERLINCOURT D A. Transducers using forced transitions between ferroelectric and antiferroelectric states[J]. IEEE Trans Sonics Ultrason, 1966, 13(4): 116–124.

[94]

XU Z P, FAN Z M, LIU X M, et al. Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics[J]. Appl Phys Lett, 2017, 110(8): 603.

[95]

NOVAK N, WEYLAND F, PATEL S, et al. Interplay of conventional with inverse electrocaloric response in (Pb,Nb)(Zr,Sn,Ti)O3 antiferroelectric materials[J]. Phys Rev B, 2018, 97(9): 094113.

[96]

ZHUO F P, LI Q, GAO J H, et al. Giant negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectrics Near Room Temperature[J]. ACS Appl Mater Interf, 2018, 10(14): 11747–11755.

[97]

ZHAO Y, HAO X H, ZHANG Q, et al. A giant electrocaloric effect of a Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature[J]. J Mater Chem C, 2015, 3: 1694–1699.

[98]

ZHAO Y, GAO H C, HAO X H, et al. Orientation-dependent energy-storage performance and electrocaloric effect in PLZST antiferroelectric thick films[J]. MRS Bull, 2016, 84: 177–184.

[99]

PARK S E, MULVIHILL M L, RISCH G, et al. The effect of growth conditions on the dielectric properties of Pb(Zn1/3Nb2/3)O3 single crystals[J]. Jpn J Appl Phys, 1997, 82(4): 1804–1811.

[100]

BOKOV A A, YE Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. J Mater Sci, 2006, 41(1): 31–52.

[101]

SHEBANOV L A, KAPOSTIN P P, BIRKS E H, et al. Some peculiarities in the rearrangement of the crystal structure and electrocaloric effect in single crystal of lead magnoniobate in the region of the diffuse phase transition[J]. Kristallografiya, 1986, 31: 317–320.

[102]

KIAT J M, DKHIL B. Handbook of advanced dielectric, piezoelectric and ferroelectric materials[M]. Cambridge: Woodhead Publishing Limited, CRC Press, 2008.

[103]

YE Z G, DONG M. Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1–x) Pb(Mg1/3Nb2/3) O3xPbTiO3 single crystals[J]. J Appl Phys, 2000, 87(5): 2312–2319.

[104]

LIU S B, LI Y Q. Research on the electrocaloric effect of PMN/PT solid solution for ferroelectrics MEMS microcooler[J]. Mater Sci Eng: B, 2004, 113(1): 46–49.

[105]

KRIAA I, ABDELMOULA N, MAALEJ A, et al. Study of the electrocaloric effect in the relaxor ferroelectric ceramic 0.75PMN–0.25PT[J]. J Electron Mater, 2015, 44(12): 4852–4856.

[106]

ROŽIČ B, KOSEC M, URŠIČ H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics[J]. J Appl Phys, 2011, 110(6): 519.

[107]

DE KROON A P, DUNN S C, WHATMORE R W. Piezo and pyroelectric properties of lead scandium tantalate thin films[J]. Integr Ferroelectr, 2001, 35(1–4): 209–218.

[108]

FUFLYIGIN V, SALLEY E, VAKHUTINSKY P, et al. Free-standing films of PbSc0.5Ta0.5O 3 for uncooled infrared detectors[J]. Appl Phys Lett, 2001, 78(3): 365–367.

[109]

HUANG Z, DONOHUE P P, ZHANG Q, et al. Comparative microstructure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, sol–gel and sputtering techniques[J]. J Phys D: Appl Phys, 2003, 36(3): 270–279.

[110]

TODD M A, DONOHUAE P P, HARPER M A C, et al. Sputtered lead scandium tantalate thin films for dielectric bolometer mode thermal detector arrays[J]. Integr Ferroelectr, 2001, 35(1–4): 115–125.

[111]

WANG Y D, ZHANG Z Y, USUI T, et al. A high-performance solid-state electrocaloric cooling system[J]. Science, 2020, 370(6512): 129–133.

[112]

TORELLÓ A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator[J]. Science, 2020, 370: 125–129.

[113]

SETTER N, CROSS L E. The role of B‐site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics[J]. J Appl Phys, 1980, 51(8): 4356–4360.

[114]

SHEBANOVS L, BORMAN K, LAWLESS W N, et al. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors[J]. Ferroelectrics, 2002, 273(1): 137–142.

[115]

SHEBANOV L, BORMAN K. On lead-scandium tantalate solid solutions with high electrocaloric effect[J]. Ferroelectrics, 1992, 127(1): 143–148.

[116]

BAI Y, HAN X, ZHENG X C, et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics[J]. Sci Rep, 2013, 3(1): 1–5.

[117]

BAI Y, HAN X, DING K, et al. Combined effects of diffuse phase transition and microstructure on the electrocaloric effect in Ba1−xSrxTiO3 ceramics[J]. Appl Phys Lett, 2013, 103(16): 162902.

[118]

HAN F, BAI Y, QIAO L J, et al. A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics[J]. J Mater Chem C, 2016, 4(9): 1842–1849.

[119]

LUO Z D, ZHANG D W, LIU Y, et al. Enhanced electrocaloric effect in lead-free BaTi1−xSnxO3 ceramics near room temperature[J]. Appl Phys Lett, 2014, 105(10): 102904.

[120]

LI J N, ZHANG D W, QIN S Q, et al. Large room-temperature electrocaloric effect in lead-free BaHfxTi1−xO3 ceramics under low electric field[J]. Acta Mater, 2016, 115: 58–67.

[121]

WANG X J, WU J G, DKHIL B, et al. Large electrocaloric strength and broad electrocaloric temperature span in lead-free Ba0.85Ca0.15Ti1−xHfxO3 ceramics[J]. Rsc Adv, 2017, 7(10): 5813–5820.

[122]

WANG X J, TIAN F, ZHAO C L, et al. Giant electrocaloric effect in lead-free Ba0. 94Ca0. 06Ti1−xSnxO3 ceramics with tunable Curie temperature[J]. Appl Phys Lett, 2015, 107(25): 252905.

[123]

SINGH G, TIWARI V S, GUPTA P K. Thermal stability of piezoelectric coefficients in (Ba1–xCax)(Zr0.05Ti0.95)O3: A lead-free piezoelectric ceramic[J]. Appl Phys Lett, 2013, 102(16): 934.

[124]

JIAN X D, LU B, LI D D, et al. Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1–xO3 ceramics[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20167–20173.

[125]

ZHAO C L, YANG J L, HUANG Y L, et al. Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions[J]. J Mater Chem A, 2019, 7: 25526.

[126]

JONES G O, THOMAS P A. The tetragonal phase of Na0.5Bi0.5TiO3 a new variant of the perovskite structure[J]. Acta Cryst, 2000, 56(3): 426–430.

[127]

ZHENG X C, ZHENG G P, LIN Z, et al. Electro-caloric behaviors of lead-free Bi0.5Na0.5TiO3–BaTiO3 ceramics[J]. J Electroceram, 2012, 28(1): 20–26.

[128]

CAO W P, LI W L, XU D, et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics[J]. Ceram Int, 2014, 40(7): 9273–9278. ;

[129]

TURKI O, SLIMANI A, SEVEYRAT L, et al. Structural, dielectric, ferroelectric, and electrocaloric properties of 2% Gd2O3 doping (Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics[J]. J Appl Phys, 2016, 120(5): 111–115.

[130]

JIANG X J, LUO L H, WANG B Y, et al. Electrocaloric effect based on the depolarization transition in (1−x)Bi0. 5Na0. 5TiO3xKNbO3 lead-free ceramics[J]. Ceram int, 2014, 40(2): 2627–2634.

[131]

GOUPIL Fl, BENNETT J, AXELSSON A K, et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT–KBT ceramics[J]. Appl Phys Lett, 2015, 107(17): 172903.

[132]

CAO W P, LI W L, DAI X F, et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT–ST ceramics[J]. J Eur Ceram Soc, 2016, 36(3): 593–600.

[133]

LI F, LI J H, ZHAI J W, et al. Influence of structural evolution on electrocaloric effect in Bi0.5Na0.5TiO3–SrTiO3 ferroelectric ceramics[J]. J Appl Phys, 2018, 124(16): 164108.

[134]

LI F, CHEN G R, LIU X, et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 ceramics[J]. J Eur Ceram Soc, 2017, 37(15): 4732–4740.

[135]

HIRUMA Y, IMAI Y, WATANABE Y, et al. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5) TiO3–SrTiO3 ferroelectric ceramics[J]. Appl Phys Lett, 2008, 92(26): 262904.

[136]

WANG K, LI J F. Domain engineering of lead-free Li-modified (K,Na)NbO3 Polycrystals with highly enhanced piezoelectricity[J]. Adv Funct Mater, 2010, 20: 1924–1929.

[137]

WANG K, LI J F. Piezoelectric properties of low-temperature sintered Li-modified (Na,K)NbO3 lead-free ceramics[J]. Appl Phys Lett, 2008, 93: 092904.

[138]

ZOU R Z, FU J, LV D Y. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48−xLix)(Nb1−xySbyTax) O3 system[J]. J Am Ceram Soc, 2009, 92(1): 283–285.

[139]

LI J T, BAI Y, QIN S Q, et al. Direct and indirect characterization of electrocaloric effect in (Na,K) NbO3 based lead-free ceramics[J]. Appl Phys Lett, 2016, 109(16): 162902.

[140]

YANG J L, HAO X H. Electrocaloric effect and pyroelectric performance in (K,Na)NbO3 based lead-free ceramics[J]. J Am Ceram Soc, 2019, 102(11): 6817–6826.

[141]

YANG J L, ZHAO Y, LOU X J, et al. Synergistically optimizing electrocaloric effects and temperature span in KNN-based ceramics utilizing a relaxor multiphase boundary[J]. J Mater Chem C, 2020, 8: 4030–4039

[142]

WANG X J, WU J G, DKHIL B, et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics[J]. Appl Phys Lett, 2017, 110(6): 063904.

[143]
MOHAMED A, MONEIM Z, MANAL B, et al. Large direct and inverse electrocaloric effects in lead-free Dy doped 0.975KNN–0.025NBT ceramics[J]. Ceram Int, 2021, Article in press.
[144]

ZHANG N, ZHENG T, ZHAO C L, et al. Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics[J]. J Mater Res, 2021, 36(5): 1142–1152.

[145]

LI J L, SHEN Z H, CHEN X H. et al, Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications[J]. Nat Mater, 2020, 19: 999–1005.

[146]

HOU Y, YANG L, QIAN X S, et al. Enhanced electrocaloric effect in composition gradient bilayer thick films[J]. Appl Phys Lett, 2016, 108(13): 133501.

[147]

HOU Y, YANG L, ZHAO X B, et al. Sintering aids modified electrocaloric response in BaZr0.2Ti0.8O3 bilayer films[J]. J Alloys Compd, 2017, 724: 8–13.

[148]

LI J L, CHANG Y F, YANG S, et al. Lead-free bilayer thick films with giant electrocaloric effect near room temperature[J]. ACS Appl Mater Interf, 2019, 11(26): 23346–23352.

[149]

CROSSLEY S, USUI T, NAIR B, et al. Direct electrocaloric measurement of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 films using scanning thermal microscopy[J]. Appl Phys Lett, 2016, 108(3): 032902

[150]

FAN P Y, LIU K, MA W G, et al. Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators[J]. J Materiomics, 2020, 7(3): 508–544.

[151]

KAR-NARAYAN S, MATHUR N D. Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials[J]. Appl Phys Lett, 2009, 95(24): 242903.

[152]

USUI T, HIROSE S, ANDO A, et al. Effect of inactive volume on thermocouple measurements of electrocaloric temperature change in multilayer capacitors of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3[J]. J Phys D Appl Phys: A Eur J, 2017, 50(42): 424002.

[153]

LIU Y, DKHIL B, DEFAY E. Spatially resolved imaging of electrocaloric effect and the resultant heat flux in multilayer capacitors[J]. ACS Energy Lett, 2016, 1(3): 521–528.

[154]

HIROSE S, USUI T, CROSSLEY S, et al. Progress on electrocaloric multilayer ceramic capacitor development[J]. APL Mater, 2016, 4(6): 27–16.

[155]

SINYAVSKY Y V, PASHKOV N D, GOROVOY Y M, et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration[J]. Ferroelectrics, 1989, 90(1): 213–217.

[156]

SINYAVSKY Y V, LUGANSKY G E, PASHKOV N D. Electrocaloric refrigeration: Investigation of a model and prognosis of mass and efficiency indexes[J]. Cryogenics, 1992, 32: 28–31.

[157]

LI Q, SHI J Y, HAN D L, et al. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device[J]. Appl Therm Eng, 2021, 190: 116806.

[158]

SHI J Y, LI Q, GAO T Y, et al. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system[J]. Int J Refrig, 2021, 121: 279–288.

[159]

WANG Y D, SMULLIN S J, SHERIDAN M J, et al. A heat-switch-based electrocaloric cooler[J]. Appl Phys Lett, 2015, 107(13): 134103.

[160]

PLAZNIK U, KITANOVSKI A, ROŽIČ B, et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device[J]. Appl Phys Lett, 2015, 106(4): 043903.

[161]

BLUNEBTHAL P, RAATZ A. Classification of electrocaloric cooling device types[J]. Europhys Lett, 2016, 115(1): 17004.

[162]

EPSTEIN R I, MALLOY K J. Electrocaloric devices based on thin-film heat switches[J]. J Appl Phys, 2009, 106(6): 064509.

[163]

LI J T, QIN S Q, BAI Y, et al. Flexible control of positive and negative electrocaloric effects under multiple fields for a giant improvement of cooling capacity[J]. Appl Phys Lett, 2017, 111(9): 093901.

[164]

LU B, YAO Y B, JIAN X D, et al. Enhancement of the electrocaloric effect over a wide temperature range in PLZT ceramics by doping with Gd3+ and Sn4+ ions[J]. J Eur Ceram Soc, 2019, 39(4): 1093–1102.

[165]

DAI G Z, WANG S B, HUANG G H, et al. Direct and indirect measurement of large electrocaloric effect in barium strontium titanate ceramics[J]. Int J Appl Ceram Technol, 2020, 17(3): 1354–1361.

[166]

GREINER A, MOLIN C, NEUBERT H, et al. Direct measurement of the electrocaloric temperature change in multilayer ceramic components using resistance-welded thermocouple wires[J]. Energy Technol. 2018, 6(8): 1535–1542.

[167]

NARAYAN S K, MATHUR N D. Direct and indirect electrocaloric measurements using multilayer capacitors[J]. J Phys D: Appl Phys, 2010, 43(3): 032002.

[168]

NARAYAN S K, CROSSLEY S, MOYA X, et al. Direct electrocaloric measurements of a multilayer capacitor using scanning thermal microscopy and infra-red imaging[J]. Appl Phys Lett, 2013, 102(3): 032903.

[169]

ZHANG T, QIAN X S, GU H M, et al. An electrocaloric refrigerator with direct solid to solid regeneration[J]. Appl Phys Lett, 2017, 110(24): 243503.

[170]

YANG J L, ZHAO Y, ZHU L P, et al. Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure[J]. Scr Mater, 2021, 193(1): 97–102.

[171]

ZHU L P, MENG X J, ZHU J Y, et al. Enhanced room temperature electrocaloric effect in lead-free relaxor ferroelectric NBT ceramics with excellent temperature stability[J]. J Alloys Compd, 2021, 892(5): 162241.

[172]

MA Cuiying, DU Huiling, LIU Jia, et al. J Chin Ceram Soc, 2020, 48(9): 1399–1407.

[173]

ZOU Yixuan, HUANG Yongan, ZHONG Michahng, et al. J Chin Ceram Soc, 2019, 47(12): 1698–1703.

[174]

LIANG Cen, LI Wei, CHU Bingkai, et al. J Chin Ceram Soc, 2020, 48(3): 351–355.

[175]

SU Chunyang, JIANG Xiangping, CHEN Chao, et al. J Chin Ceram Soc, 2020, 38(6): 849–852.

Journal of the Chinese Ceramic Society
Pages 642-660
Cite this article:
ZHANG C, CEN F, XIAO W, et al. Electrocaloric Effect of Ferroelectric Ceramic and Its Application. Journal of the Chinese Ceramic Society, 2022, 50(3): 642-660. https://doi.org/10.14062/j.issn.0454-5648.20210789
Metrics & Citations  
Article History
Copyright
Return